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Abstract

Quantum noise in ground based gravitational wave detectors arises from the

vacuum fluctuation coming from the output port of the interferometer. Replacing

this vacuum by a squeezed one turns out to be capable of reducing the quantum

noise. The originally used frequency independent squeezing can only improve the

sensitivity at high frequencies, since the error ellipse is squeezed and rotated by

the response of the interferometer. Hence frequency dependent squeezing (FDS)

by the use of filter cavity (FC) is desired to counteract this ponderomotive squeez-

ing in order to achieve a quantum noise reduction over all frequency range. For

the current dual recycled interferometers, one FC is enough to achieve the optimal

FDS in the Resonant Sideband Extraction (RSE) regime. For the VIRGO detec-

tor the possibility of detuned RSE (DRSE) has been considered because of higher

order laser modes generated due to the marginally stable recycling cavity. This

work is devoted to the optimization of FDS for VIRGO in the DRSE regime, by

optimizing over the FC detuning frequency, initial squeezing angle and FC input

mirror transmissivity (which determines the FC bandwidth) of the single FC con-

figuration currently available in VIRGO. Specifically the quadrature input-output

relation and quantum noise spectral density for Michleson interferometer are de-

rived and the same formulae for dual recycled interferometer are also given. An

analytic formula is obtained for optimal squeezing with one FC in the RSE regime.

After this reproduction of well established results in the literature, numerical sim-

ulation is done to find the optimal performance of current VIRGO detector with

one FC in terms of binary neutron star (BNS) range, by use of the Matlab code

gwinc developed by the community. Starting from a baseline of BNS range of 87.9

Mpc, changing only the FC detuning and initial squeezing angle allows the BNS

range to reach 93.0 Mpc under the current FC bandwidth. By varying all three

FC parameters the maximum BNS range is found to be 95.7 Mpc. This gives a

qualitative description of the increase of sensitivity of the current VIRGO detector

in DRSE setup brought by FDS.
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1 Introduction

Ever since Einstein linearlized his theory of general relativity (GR) to obtain a wave-

like solution[1, 2], debates has lasted for decades about whether gravitational wave (GW)

is real or simply an artefact from coordinate choice. Tremendous interllectual effort was

spent on proving the reality of GW[3, 4]. The discovery of Hulse-Taylor pulsar in 1974

indirectly confirmed the existence of GW by showing the match between the observed or-

bital decay of the binary pulsar and the one predicted by gravitational radiation loss.[5].

This brought a renaissance to the field that just went through the setback of null re-

sults of resonant bar detectors first proposed by the pioneer of GW detection Joseph

Weber[6]. Then the idea of using interferometers to search for GW signal started to

emerge and solidify[7, 8]. Starting from the 1990s kilometer-scale GW interferometers

began to be built, such as the French-Italian collaboration project VIRGO[9], and the

joint MIT-Caltech project LIGO[8, 10]. After decades of construction and upgradation,

the detectors gradually reached the desired sensitivity and the first GW signal was de-

tected in September 2015[11], marking a remarkable triumph of a century of theoretical

investigation and half a century of relentless experimental commitment[12]. Up to the

last observation run O3 ended in 2020, about 90 GW events have been detected[13]. The

advent of GW astronomy offers new ways to explore questions on fundamental theories

of gravity, astrophysics, cosmology and nuclear physics. Further test of GR can be con-

ducted and alternative theories of gravitation can be constrained[14, 15]. An independent

measurement of Hubble parameter can be carried out as attempts to ease the Hubble ten-

sion that appears over recent years[16, 17]. New light can be shed on the understanding of

equation of state of dense matter like neutron stars[14, 18]. The list of exciting questions

continues.

However on the experimental side, since the relative distorsion of distance ∆L/L of

two freely falling masses in the presence of GW reaching Earth is typically 10−21, measur-

ing this feeble GW signal is an extremely challenging task even for km-size interferometers

like VIRGO which will be the focus of this work. The VIRGO detector first completed

its construction at Cascina near Pisa, Italy in 2003 and started joint data taking with

LIGO in 2007[12]. The infrastructure of initial VIRGO consists of 3-km Michelson inter-

ferometer with ultra-high vacuum tubes enclosing the arms. Mode cleaners at the input

and output port are used to select the TEM00 mode of the laser. Mirrors are suspended

by a chain of pendula to isolate them from sesmic noise. Continuous control of mirror

position and angle ensures to lock the working point on the dark fringe. Power recycling

(PR) is installed to increase circulating power in the arms. Fabry-Pérot (FP) cavities

are implemented in the arms to increase the effective arm length[9, 19]. The sensitivity,

evaluated by binary neutron star (BNS) range1 is around 4 Mpc at this stage[19]. The

second upgrade leading to Advanced VIRGO (AdV) took place from 2009 to 2017. Fused

silica grades, low loss and low absorption coating are introduced to the new mirrors to

reduce thermal noises and optical losses. New payload designs are developed to be com-

patible with the super attenuators to reduce the sesmic noise[21]. Frequency independent

squeezing (FIS) is also introduced in AdV for the O3 run. During O3 AdV has reached a

1A comoving distance of the farthest BNS coalescence probable by the detector given a signal-to-noise

ratio of 8, averaged over volume and orientation. For details see[20].

1



BNS range up to 60 Mpc. After O3, AdV was upgraded into AdV+ planned for the O4

run in 2023 which is currently under commissioning at the time of writing, with a target

sensitivity of around 80 to 90 Mpc for phase I of AdV+. Apart from the newly installed

signal recycling (SR) mirror, another novel feature is the frequency dependent squeezed

vacuum[22], allowing to supress the quantum noise over the whole frequency range. This

is the topic of the present internship project.

Studying the quantum noise not only helps boosting the sensitivity of the detectors,

but also opens the door to exploring the richness of quantum physics. The quantum noise

has two sources: shot noise arising from the randomness of the number of photons hitting

the test mass mirrors, and radiation pressure noise due to the motion of mirror brought

by the laser impinging on it[23]. In conventional interferometers these two effects yield

that there exists an optimal power where the sensitivity reaches the minimal envelop

bounded by the standard quantum limit (SQL) at a specific frequency. Increasing the

laser power will reduce shot noise but increase the radiation noise and vice versa. The SQL

is an intrinsic limitation imposed by the law of quantum mechanics, namely Heisenberg

uncertainty principle for light used in the detection. The existence of SQL was first

discussed by Braginsky[24]. Its origin and application in GW interferometers was explored

by Caves et al.[25]. Conventional interferometers require un unrealistically high input

power for the sensitivity to come close to SQL. The dual recycled interferometers, i.e.,

PR and SR recycled ones, remedies this and create resonant dips in the sensitivity curves,

allowing even to beat SQL in some certain ranges[26]. On top of this sophisticated

improvement of interferometers, a more desirable reduction of quantum noise over all

frequency range is realised by the technique of squeezing[27], or in its more recent form,

frequency dependent squeezing (FDS). The basic idea of FDS is to inject a squeezed

vacuum of light field from the dark port of interferometer by using filter cavity (FC),

so as to counteract the ponderomotive rotation of quantum noise ellipse brought by

the interferometer[28]. In the case where the SR cavity detuning phase is set to π/2,

i.e., Resonant Sideband Extraction (RSE) regime, the optimal FDS can be realised by

tuning the parameters of one FC[29]. This strategy has been well demonstrated in LIGO.

But the RSE is not well adapted to AdV because higher order modes generated in the

interferometer can leak out towards the photodetector due to marginal stability of SR

mirror in VIRGO, undermining the detection. A possible solution is to operate in the

detuned RSE (DRSE) regime. This brings the question: how well can one FC augment

the performance of the detector? Moreover for future generation GW detector such as

Einstein Telescope (ET) planned to be operating around 2038, both RSE and DRSE

regime are considered. While having more than one FC allows to achieve better FDS in

the latter, losses and degradation of squeezing brought by an extra FC should also be

taken into account to evaluate the pros and cons. Hence the objective of this work is on

numerical optimization over FC parameters to achieve optimal FDS for AdV+ to detect

binary GW events. In principle the same strategy can be applied to ET as well. This will

certainly provide some guidance for the the coming observational runs and instrumental

construction.

The report is organized as follows: in section 2, basic concepts in quantum optics

such as coherent and squeezed state, are presented. The input-output relation is derived

for the Michelson interferometer and the notion of spetral density is introduced. Section
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3 discusses FDS in both RSE and DRSE regime in LIGO-VIROGO-like interferometers,

using both analytic and numerical approach. Finally section 4 summarizes the results

and provide some outlook for the next step in this research.

2 Quantum noise in interferometric detectors

First the monochromatic light field is discussed, since it has the simplest formalism

such as quantization, coherent state, squeezing and quantum fluctuation. Then these

concepts are generalised to light field spanning the whole continuous frequency range.

The mathematical formalism is a bit more complicated but the essential ideas are the

same. The latter will be eventually applied to interferometers to illustrate the concept of

quantum noise.

2.1 Basic notions of quantum optics

The plane wave solution to Maxwell equations in free space is

E⃗(t, r⃗) = E⃗0

[
a e−i(ωt−k⃗·r⃗) + a∗ ei(ωt−k⃗·r⃗)

]
, (2.1)

which describes a monochromatic wave with a fixed angular frequency ω and wave number

k. The polarisation vector E⃗0 absorbs the strength of the field. In the following the arrow

over the light field is dropped for simplicity, but one should keep in mind that this is a

vector in Cartesian coordinate with only 2 degrees of freedom since k⃗ · E⃗ = 0. Choose

the direction of k⃗ to be the z axis and after quantisation, the light field is promoted to a

hermitian operator on a Hilbert space spanned by the state vectors of light as a quantum

system, which is written as

Ê(t, z) = E0

[
â e−i(ωt−kz) + â† ei(ωt−kz)

]
. (2.2)

â and â† are the creation and annihilation operator of this monochromatic photon and

satisfies the commutation relation

[â, â†] = 1. (2.3)

All other commutators vanish. From now on the spatial dependence of the light field

will be omitted, since a free propogation of the light field from z to z + l corresponds to

changing Ê(t, z) to Ê(t− l/c, z). An alternative description of the light field is through

the quadrature operators, defined as

â1 =
1√
2

(
â+ â†

)
â2 =

1√
2i

(
â− â†

)
, (2.4)

where â1 and â2 are called amplitude and phase quadrature respectively. Then the light

field in (2.2) can be written as

Ê(t) =
√
2E0 (â1 cosωt+ â2 sinωt) , (2.5)
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with the non-trivial commutation relation [â1, â2] = i. In this way the observable light

field is expressed in terms of observables, the quadratures, since they are hermitian.

Ecl

±
√

∆Ê2

t

E

2E0

2π
ω

a1

a2

(a) Coherent light

Ecl

±
√

∆Ê2

t

E

2π
ω

a1

a2

(b) Anti-squeezed light

Ecl

±
√

∆Ê2

t

E

2π
ω

a1

a2

(c) Squeezed light

Figure 1: The coherent and coherent-squeezed monochromatic light in the phasor picture.

The lower part displaying the quadrature planes are not shown to scale as the upper

pannels for the convience of plotting and illustration. The coherent amplitude is chosen

to be α = 1 so that the classical field represented by the solid line is Ecl(t) = 2E0 cosωt

according to (2.7). The squeezing parameter is chosen as such that ϕ = 0 and χ = r ∈ R.
Here r > 0 for (b) and r < 0 for (c). In either case the quantum fluctuation oscillates

with a frequency twice as that of the classical light field, as a result of (2.11). The

quadrature plane can be regarded as a complex plane to visualize the coherent amplitude,

which is nonthing but the classical phasor in the rotating frame with the same rotating

frequency of the light field. The quantum fluctuation can be regarded as random phasors

superimposed on top of the classical field represented by the bold red arrow. By tuning

the squeezing parameter χ one can ontain different patterns of quantum fluctuations.

This image was first produced by Caves in [27].

The coherent state |α⟩ is defined to be the eigenstate of the annihilation operator,

i.e., â |α⟩ = α |α⟩ for some α ∈ C. It can be realised by acting on the vacuum state with

the coherent operator D̂(α), which is defined as a unitary operator as the following

D̂(α) |0⟩ ≡ exp
(
αâ† − α∗â

)
|0⟩ = |α⟩ . (2.6)

If the coherent state of light is physically obtained, we’ll be interested in the expectation

and variance of our observable under this state, which in this case is the light field (2.5).

But we can adopt the Heisenberg picture2 and regard the change from vacuum to coherent

state as the change of operator Êα(t) = D̂†(α)Ê(t)D̂(α). It can be easily shown using

the commutation relation, that the coherent light field is express as

Êα(t) = E0 [(α + α∗) cosωt− i(α− α∗) sinωt] + Ê(t) ≡ Ecl(t) + Ê(t). (2.7)

2The term Heisenberg picture and Schrödinger picture are used even if the unitary operator under

discussion is not time evolution operator. It’s the case for the coherent operator as well as the squeeze

and rotation operators to be introduced later.

4



This expression has a clear physical meaning: a coherent light is nothing but a classical

light field superimposed by quantum fluctuation. A simple calculation of the vacuum

expectation and variance shows that

⟨Êα(t)⟩ = ⟨0| Êα(t) |0⟩ = Ecl(t) (2.8a)

⟨∆Êα(t)
2⟩ = ⟨0|

(
Êα(t)− Ecl(t)

)2
|0⟩ = E2

0 = const (2.8b)

Another important operator is the squeeze operator, which is again a unitary operator

but defined as

Ŝ(χ) ≡ exp

(
1

2
χ∗â2 − 1

2
χâ†2

)
, (2.9)

where the squeezing parameter is defined by χ = re2iϕ ∈ C. Then the squeezed coherent

light field is

Êα,χ(t) = Ŝ†(χ)Êα(t)Ŝ(χ) = Ecl(t) + Ŝ†(χ)Ê(t)Ŝ(χ)

= Ecl(t) +
√
2E0 [(cosh r − cos 2ϕ sinh r)â1 − sin 2ϕ sinh r â2] cosωt

+
√
2E0 [− sin 2ϕ sinh r â1 + (cosh r + cos 2ϕ sinh r)â2] sinωt.

(2.10)

The vacuum expectation for the squeezed coherent light is still the classical field expressed

in (2.7), but the variance is no longer a constant. Instead it’s an oscillation with twice

the frequency as the classical field

⟨∆Êα,χ(t)
2⟩ = E2

0 [cosh 2r − sinh 2r cos(2ωt− 2ϕ)] . (2.11)

A graphical representation of these results are given in Fig 1. The application of

these notions in GW detection is only to consider all possible sideband frequencies. In

terms of mathematical formalisms, the observable light field is summed over a continuous

range of frequencies. The coherent amplitude α(Ω) and the squeeze parameter χ(Ω) =

r(Ω) exp(2iϕ(Ω)) becomes functions of frequency. The analysis is quite similar to the

case of monochromatic light, with the classical field replaced by the GW signal and the

quantum variance interpreted as the quantum noise. In particular, the non-zero variance

⟨â2i ⟩, (i = 1, 2) which arises from photon number fluctuation, accounts for the shot noise.

And everything is done in a “frequency-wise” way. But a new tool, called two-photon

formalism[30, 31], has to be implemented to consider sidebands around a carrier laser

frequency.

2.2 From monochromatic light to sidebands and two-photon

formalism

In Fig 1, the classical light field is represented as a fixed phasor arrow in the co-

rotating frame of the light. In the presence of modulation, this light field is called the

carrier. An amplitude modulation causes the arrow end to move back and forth along

the amplitude axis a1. A phase modulation causes the arrow end to go back and forth

vertically, making the arrow swing around a1 axis. This effect is due to superposition of
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the carrier phasor arrow and the sideband phasor arrows[32]. The modulation frequency

is the sideband frequency and simply the GW frequency in the the case of GW detection.

The mathematical formalism to deal with sideband for classical field is well represented

by the modulation factors entering the functions representing the light field such as (2.1).

But the tool to describe the sideband picture for the quantum light field will have to

rely on the two-photon formalism proposed by Caves and Schumaker in [30, 31], which is

presented below.

Consider a carrier laser beam of frequency ω0. Its quantum fluctuation should cover

a whole range of frequency[28]

Ê(t) =

∞∫
0

dω

2π

√
2πℏω
Ac

âωe
−iωt + h.c. = Ê+(t) + h.c., (2.12)

where A is the cross section of the laser beam and c is the speed of light. The non-

trivial commutation relation becomes [âω, â
†
ω′ ] = 2πδ(ω − ω′). If only the sidebands

around carrier frequency ω0 matter, meaning only the sidebands with frequency Ω ≪ ω0

contributes to the integration, then the positive frequency part can be approximated as

Ê+(t) =
1

2

+∞∫
−ω0

dΩ

2π

√
2πℏ(ω0 + Ω)

Ac
âω0+Ω e−i(ω0+Ω)t +

1

2

−∞∫
ω0

dΩ

2π

√
2πℏ(ω0 − Ω)

Ac
âω0−Ω e−i(ω0−Ω)t

≈
√

2πℏω0

Ac
e−iω0t

∞∫
0

dΩ

2π

(
â+ e−iΩt + â− eiΩt

)
.

(2.13)

The approximation is done by admitting ω0 ± Ω ≈ ω0 to take out the squareroot, ap-

proximating the ω0 in the integration limits by ∞ and defining â± ≡ âω0±Ω. Rewriting

the integrated operator as time dependent annihilation operator in the second line, the

quantum fluctuation in (2.12) can be written as

Ê(t) =

√
2πℏω0

Ac

(
â(t) e−iω0t + â†(t) eiω0t

)
, (2.14)

in complete analogy with (2.2), with the easily verified non-trivial commutation relation

[â(t), â†(t′)] = δ(t − t′) again analogous to (2.3) and E0 identified with
√

(2πℏω0)/(Ac).

So we can almost proceed as before, except that the creation and annihilation operators,

as well as the two quadrature operators are now time dependent and cover all frequencies.

Ê(t) =

√
4πℏω0

Ac
[â1(t) cosω0t+ â2(t) sinω0t]

=

√
4πℏω0

Ac

cosω0t

∞∫
0

dΩ

2π

(
â1(Ω) e

−iΩt + h.c.
)
+ sinω0t

∞∫
0

dΩ

2π

(
â2(Ω) e

−iΩt + h.c.
) .

(2.15)

But notice a crucial difference with the monochromatic light: the quadrature operators

in frequency domain consist of creation and annihilation operators from both upper and

6



lower sideband, i.e.,

â1(Ω) =
1√
2
(â+ + â†−) â2(Ω) =

1√
2i
(â+ − â†−). (2.16)

This is the reason why such a formalism is called the two-photon formalism. The non-

trivial commutation relation reads

[â1(t), â2(t
′)] = iδ(t− t′) [â1(Ω), â

†
2(Ω

′)] = 2πiδ(Ω− Ω′), (2.17)

again in analogy with [â1, â2] = i in the monochromatic case.

The coherent operator and squeeze operator become operator-valued functionals, with

a coherent function (a function of frequency, in contrast to coherent amplitude as a c-

number before) and a squeeze function as inputs. Formally they are defined as[28, 30,

31, 33]

D̂[α(Ω)] ≡ exp

 ∞∫
0

dΩ

2π

(
α(Ω)â†Ω − α∗(Ω)âΩ

) , (2.18)

Ŝ[χ(Ω)] ≡ exp

 ∞∫
0

dΩ

2π

(
χ∗(Ω)â+â− − χ(Ω)â†+â

†
−

) . (2.19)

Just like in the analysis of monochromatic light, the classical carrier light field can be

obtained from the vacuum field by shifting it by α(Ω). In a standard laser the coherent

function is α(Ω) =
√
2πāδ(Ω − ω0), with ā =

√
(2P0)/(ℏω0) and P0 being the input

laser power, since the carrier laser contains only a single frequency ω0. An analogous

calculation shows[33]

Êα(t) =

(√
2P0

ℏω0

+ â1(t)

)
cosω0t+ â2(t) sinω0t, (2.20)

with the time dependent quadrature operators â1,2(t) read out from (2.15) and the unit

system chosen as
√
2E0 =

√
(4πℏω0)/(Ac) = 1. Again an interpretation of classical light

field superimposed by quantum fluctuation is endowed on such an expression, except now

the quantum part contains contribution from all sideband frequencies. It’s hardly worth

the pain to work out the squeezed light field in time domain, but the physics is that in

frequency domain, the quadrature operator at each frequency value Ω is squeezed by the

squeezing parameter χ(Ω) = r(Ω) exp(2iϕ(Ω)) at that frequency, in precisely the same

manner as discussed in section 2.1.

2.3 Input-Output relations and noise spectral density

The physics of quantum noise in ground based GW detectors is mostly contained in

the input-ouput relation, i.e., the linear combination of the output quadrature operators

in terms of the input quadrature operators, for the Michelson interferometer shown in

Fig 2a. The strain equivalent noise spetral density will be derived from this relation.

This will be the focus of this subsection. More sophisticated optical configuration, such
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as the one shown in Fig 4a, simply gives rise to a different response for the quadratures

with more complex frequency dependent linear coeffecients. For simplicity, the unit in

this subsection is chosen as
√

(4πℏω0)/(Ac) = 1. The notations for light field of different

modes are defined in Fig 2a. The optical lossse are negelected altogether here.

BS

(dark port)

(bright port)Laser

xB ETM B

xA

ETM A

Photodiode

Êin = [ā+ âin1(t)] cosω0t
+ âin2(t) sinω0t

Ê′
out

ÊinB ÊoutB

ÊinA

ÊoutA

âQ1(t) cosω0t
+ âQ2(t) sinω0t = ÊQ Êout = âout1(t) cosω0t

+ âout2(t) sinω0t

(a) Configuration of Michelson interferometer

(b) Quantum noise strain for Michelson

Interferometer

Figure 2: The configuration and quantum noise in simple Michelson interferometer. On

the left panel BS stands for beam spliter. The convention is that light reflected from

the bold side of the BS suffers a π phase shift. ETM stands for end test mass, meaning

the end mirrors of the two arms labelled by A and B. The arm lengths are the same.

The dashed lines are the position of the mirror faces hit by laser when a + mode GW

transmits through the plane perpendicularly. On the right panel, sensitivity curves for

quantum noise are plotted from (2.36), with parameters m = 40 kg and L = 4 km. It

can be seen that to approach the SQL in an actual interferometer, unrealistically high

input power is needed. Also shown here are the error ellipses of output quadratures in

frequency domain for P0 = 108 W and a few frequency values. Such a ponderomotive

squeezing is the response of the interferometer configuration. It’s plotted from (2.34) and

(2.35).

The BS is a 50%-50% one, meaning the laser immediately after the BS is

ÊinA(t) =
1√
2
Êin(t)−

1√
2
ÊQ(t) ÊinB(t) =

1√
2
Êin(t) +

1√
2
ÊQ(t) (2.21)

and the output light field going towards the photodiode readout is

Êout(t) = − 1√
2
ÊoutA(t) +

1√
2
ÊoutB(t), (2.22)

where Êout j(t) (j = A,B) is related to their input field by Êout j(t) = Êin j(t − 2L/c −
2xj/c). From these linear relations the output light field can be written as

Êout(t) =
1

2
ÊQ(t−2τ−2xA

c
)+

1

2
ÊQ(t−2τ−2xB

c
)−1

2
Êin(t−2τ−2xA

c
)+

1

2
Êin(t−2τ−2xB

c
).

(2.23)
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a1

a2

Ê ′
outBÊ ′

outA

carrier

a member from quantum ensemble

noise from

dark port

vacuum

(a) Phasor picture with no GW

a1

a2

Ê ′
outBÊ ′

outA

carrier

a member from quantum ensemble

GW signal

(b) Phasor picture in presence of GW

Figure 3: The phasor picture. Ê ′
outj is the mode immediately coming out of BS towards

the photodiode. This is not marked in Fig 2a. (a) shows the situation in the absence

of GW. The light coming from the two arms differ by a phase shift of π. This is the

case for the classical carrier light and the quantum fluctuation from the bright port, thus

explaining the absence of contribution to quantum noise from the bright port when the

working point is on the dark fringe. In (b) when GW signal passes by, the classical carrier

is frequency modulated. Their superposition produces the GW signal. In this case the

quantum fluctuation from the bright port no longer exactly cancel since the arms are

no longer of the same length, but this effect is of second order infinitesimal and can

be neglected. The quantum noise from dark port vacuum fluctuation are shown as a

tilted ellipse at some sideband frequency. The drawings are not shown to scale for the

convenience of visualization.

The xj (j = A,B) in the argument should be thought of as xj(t − τ) to account for the

single trip of light travelling from BS to the ETM. In practice the two arms are designed

to be at resonance with the carrier, meaning ω0L/c = ω0τ = nπ, n ∈ Z. Then do a

Taylor expansion, keeping in mind that âin i, âQi, (i = 1, 2) and xj are already to first

order and neglecting higher order terms,

Êin(t− 2τ − 2xj/c) = [âin1(t− 2τ) + ā] cosω0t+

[
âin2(t− 2τ) +

2ω0ā

c
xj(t− τ)

]
sinω0t.

(2.24)

ÊQ(t− 2τ − 2xj/c) = âQ1(t− 2τ) cosω0t+ âQ2(t− 2τ) sinω0t (2.25)

Plugging these back into (2.23), the Taylor expanded output field will be

Êout(t) = âQ1(t− 2τ) cosω0t+
[
âQ2(t− 2τ) +

ω0ā

c
xBA(t− τ)

]
sinω0t, (2.26)

where xBA = xB −xA. Already, some physics can be extracted from this expression. The

output field does not contain ā cosω0t from the carrier laser, which means the apparatus

is operated on the dark fringe. This makes sense since in our theoretical modelling the

two arms are of the same length and there is a π phase shift for light reflected by the BS

when coming back from arm A. And at least for shot noise, only the vacuum fluctuation

coming from the dark port will contribute. This can be imagined solely based on the

phasor picture Fig 3. For light coming from the bright port, the two phasors from two
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arms exactly differ by a phase rotation of π, be them classical phasors or the random

quantum phasors added on top of them. Based on this picture, the radiation pressure

noises from quantum fluctuation of the carrier should also cancel out. The subsequent

calculation will only verify this physical intuition.

However, if xBA in (2.26) is only treated as a classical variable arising from tidal

deformation of GW, the radiation pressure noise will be completely omitted. Actually,

the displacement of the mirrors should also be treated as a quantum observable3 x̂BA =

x̂B − x̂A. By definition, analogous to the input laser field expressed in (2.20), for the

output field

Êout(t) = âout1(t) cosω0t+ âout2(t) sinω0t, (2.27)

in which both quadrature operators can contain some classical signal in general. Com-

paring with (2.26) gives us the time domain input-output relation

âout1(t) = âQ1(t− 2τ) (2.28a)

âout2(t) = âQ2(t− 2τ) +
ω0ā

c
x̂BA(t− τ). (2.28b)

This means the GW signal is only contained in the phase quadrature, again in agreement

with the phasor picture Fig 3. To convert the input-output relation to frequency domain,

notice that the design of the mirrors is such that they are suspended by long enough wires

such that the characteristic frequency of the suspension (like in the case of a pendulum)

is much smaller than the characteristic GW frequency 10 Hz to 10 kHz, fsusp ≪ Ω, so

they can be treated as free test masses. Suppose there is a GW of + mode travelling

perpendicularly through Fig 2a, the equation of motion for the test masses can be written

as[34]

m¨̂xj = F̂rp j(t) +
1

2
sgn(j)mḧ(t)L, (2.29)

with sgn(A) = −1, sgn(B) = 1 and m being the mirror mass. The radiation pressure

force is given by

F̂rp j = 2
A
4π

Ê2
in j(t− τ) (2.30)

A bar means average over time, which means ignoring rapidly varying terms such as those

oscillating with carrier frequency. Based on (2.21),

m¨̂xBA(t) =
Aā

2π
âQ1(t− τ) +mḧ(t)L. (2.31)

The physics here is that the radiation pressure noise, again only arises from vacuum field

from the dark port and not from the bright port. This should be expected since no matter

how randomly the photon pushes the mirrors, they push them in the same way. And due

to the extra π phase shift of the BS for ÊoutA, the detector does not “see” this random

pushing. But this is not the case for ÊQ entering through the dark port because of a

3It is not clear what it means for operators to be the input of an operator-valued function as Êout

in the above expressions, but the Taylor expansion will not be affected since x̂j ∈ Hj , which should

commute with observables living in the Hilbert space of light. There is no ordering issue when doing

Taylor expansion.
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second reflection by the BS. Combining (2.28) and (2.31), the input-output relation in

the frequency domain can finally be written as(
âout1(Ω)

âout2(Ω)

)
= e2iΩτ

(
1 0

−κ(Ω) 1

)(
âQ1(Ω)

âQ2(Ω)

)
+
√
2κeiΩτ

(
0

h(Ω)
hSQL(Ω)

,

)
(2.32)

where κ(Ω) and hSQL(Ω) are defined as

κ(Ω) =
4P0ω0

mc2Ω2
hSQL(Ω) =

√
4ℏ

mΩ2L2
. (2.33)

The diagonal terms in the transfer matrix in (2.32) contribute to shot noise while the off

diagonal term contribute to radiation pressure noise. The transfer matrix demonstrates a

kind of frequency dependent squeezing and rotation brought solely by the interferometer,

dubbed ponderomotive squeezing. It can be verified that[28](
âout1(Ω)

âout2(Ω)

)
= e2iΩτ Ŝ†(r, φ)R̂†(θ)

(
âQ1(Ω)

âQ2(Ω)

)
R̂(θ)Ŝ(r, φ), (2.34)

with frequency dependent angles and squeezing amplitude

θ = arctan (κ(Ω)/2) , φ =
1

2
arccot (κ(Ω)/2) , r = arcsinh (κ(Ω)/2) . (2.35)

The output error ellipse of such ponderomotive squeezing is represented in Fig 2b, for

a chosen set of parameters. Notice that at high enough frequencies the ellipse almost

becomes a circle. It’s a sign that a white noise dominates at high frequencies, which is

nothing but the shot noise.

The strength of the quantum noise is measured by the double-sided spectral density4

for âout2(Ω). Converting to strain equivalent noise spectral density

Sh =
h2
SQL

2κ(Ω)

(
1 + κ2(Ω)

)
=

h2
SQL

2

(
1

κ
+ κ

)
≥ h2

SQL(Ω). (2.36)

The upshot is that, there exists a standard quantum limit for the sensitivity of simple

Michelson interferometer, which is reached by an optimal input laser power given a fixed

experimental setup. Form = 40 kg, carrier wavelength being λ = 1064 nm and a sideband

angular frequency Ω = 100 Hz, the optimal power is estimated to be P0 ≈ 5×106 W, which

is way beyond any comercially realisable laser. This is why more complex configuration,

such as PR and arm FP cavities are introduced, as in Fig 4a. In either case, the additional

structures simply change the input-output relation by the relation for the modes into and

out of the additional cavities. Details can be found in [26, 28, 29]. A general expression

for the input-output relation for advance detectors can be formally written as(
b̂1(Ω)

b̂2(Ω)

)
=

1

M

[
T (Ω)

(
â1(Ω)

â2(Ω)

)
+ s̄(Ω)h(Ω)

]
. (2.37)

4The double-sided spectral density for any pair of observables Ô1 and Ô2 denoted as SO1O2
is defined

as 1
2SO1O2δ(Ω−Ω′) ≡ 1

2π ⟨0| O1(Ω)O2(Ω
′) |0⟩sym = 1

2π ⟨0| 1
2{O1(Ω)O2(Ω

′)} |0⟩ . This is the generalisation
of quantum cross correlation to the observables depending on a continuous range of frequency, which in

the case of O1 = O2 and ⟨O1⟩ = 0 is simply the variance. It, as a measure of noise strength, is simply

the generalisation of the variance discussed for the monochromatic light in subsection 2.1.
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For dual recycled interferometers with arm FP cavities, the coefficient M , matrix T and

vector s̄ can be derived[26, 29] as

T11,22 = e2iΦ
[
(1 + r2SR)(cos 2ϕSR +

κ

2
sin 2ϕSR)− 2rSR cos 2Φ

]
(2.38a)

T12 = −e2iΦt2SR(sin 2ϕSR + κ sin2 ϕSR), T21 = e2iΦt2SR(sin 2ϕSR − κ cos2 ϕSR). (2.38b)

M = 1 + r2SRe
4iΦ − 2rSRe

2iΦ
(
cosϕSR +

κ

2
sin 2ϕSR

)
. (2.39)

s̄1 = −
√
2κ

hSQL

tSR(1 + rSRe
2iΦ) sinϕSR, s̄2 = −

√
2κ

hSQL

tSR(−1 + rSRe
2iΦ) cosϕSR. (2.40)

Depending on the presence of arm FP cavity, the functional forms of Φ(Ω) and κ(Ω) can

vary. tSR and rSR are SR mirror amplitude transmissivity and reflectivity respectively.

And ϕSR is the phase detuning of the SR cavity. In general, if the readout is not at the

phase quadrature but at a generic angle ζ, the strain calibrated noise spectral density

derived from (2.37) is expressed as

Sh(Ω) = 2×

(
cos ζ sin ζ

)
T ⟨0|

(
â1
â2

)(
â†1 â†2

)
|0⟩sym T †

(
cos ζ

sin ζ

)
(
cos ζ sin ζ

)
s̄(Ω)s̄†(Ω)

(
cos ζ

sin ζ

)

=

(
cos ζ sin ζ

)
T (Ω)T †(Ω)

(
cos ζ

sin ζ

)
(
cos ζ sin ζ

)
s̄(Ω)s̄†(Ω)

(
cos ζ

sin ζ

) .

(2.41)

This equation should be regarded as after cancelling the Dirac delta δ(Ω − Ω′) on both

sides. The noise strain for GEO600 is plotted in Fig 4b.

The idea of FDS to be introduced in the next section is simply to manipulate the

vacuum entering the dark port. In terms of formalisms, a squeezed vacuum state |sqz⟩ =
Ŝ(r, ϕ) |0⟩ is used in the first line of (2.41). Or equivalently in the Heisenberg picture,

the operators â1,2 undergo a squeeze transformation, while keeping the expectation value

taken with respect to the original vacuum state |0⟩.

3 Frequency dependent squeezing and optimization

3.1 Optimal squeezing for Resonant Sideband Extraction

The squeeze operator for a single sideband frequency Ω in two-photon formalism (in

contrast to the form in the time domain (2.19)) is simply

Ŝ(r, ϕ) = exp
(
re−2iϕâ+â− − re2iϕâ†+a

†
−

)
. (3.1)
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(a) The dual recycled interferometer
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SR amplitude readout, φSR = 0.0055 rad

SR phase readout, φSR = 0.0055 rad

conventional with P0 = 10 kW

conventional with P0 = 1000 kW

conventional with P0 = 100000 kW

(b) Quantum noises in GEO600

Figure 4: The configuration of the a dual recycled interferometer and quantum noises. (a)

is taken from [33]. ITM stands for internal test mass, which is fixed when GW passes by.

PRM stands for power recycling mirror. And SRM stands for signal recycling mirror. (b)

shows the quantum noise for GEO600 at the phase of the dual recycling interferometer

from the left pannel, except that it is free of arm FP cavities. It is reproduced from the

work of Harms et al. in [29]. For conventional interferometers the readout is always at

phase quadrature.

With the help of rotation operators and matrices defined in Appendix A, the squeezed

quadrature operators can be written as(
â′1(Ω)

â′2(Ω)

)
= Ŝ†(r, ϕ(Ω))

(
â1(Ω)

â2(Ω)

)
Ŝ(r, ϕ(Ω))

= R̂†(ϕ)Ŝ†(r, 0)R̂†(−ϕ)

(
â1
â2

)
R̂(−ϕ)Ŝ(r, 0)R̂(ϕ)

= R(ϕ)S(r, 0)R(−ϕ)

(
â1
â2

) (3.2)

In practice only the rotation angle of the squeeze operator is made frequency dependent.

Replace â1,2 by â′1,2 in (2.41), the noise strain for squeezed vacuum is expressed as

Sh
SQZ(Ω) =

(
cos ζ sin ζ

)
T (Ω)R(ϕ(Ω))

(
e−2r 0

0 e2r

)
R(−ϕ(Ω))T †(Ω)

(
cos ζ

sin ζ

)
(
cos ζ sin ζ

)
s̄(Ω)s̄†(Ω)

(
cos ζ

sin ζ

) . (3.3)

If the squeeze amplitude r > 0, it’s better to choose amplitude readout ζ = 0 and make

R(−ϕ(Ω))T †(Ω)

(
cos ζ

sin ζ

)
∝
(
1

0

)
. (3.4)

In the dual recycled interferometer, the matrix element of T is real up to a global phase

factor, without which is denoted as Tij below. This gives the theoretical optimal frequency
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dependent squeezing angle

ϕ(Ω) =
T12(Ω) cos ζ + T22(Ω) sin ζ

T11(Ω) cos ζ + T21(Ω) sin ζ
(3.5)

(a) Advance VIRGO+ with FC
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No squeezing, φSR = 3π/8

No squeezing, φSR = π/2

FIS with φ = −π/2

FDS with ideal angle

FDS with ideal FC parameters

(b) Quantum noises for AdV

Figure 5: AdV+ configuration and the correponding quantum noises. (a) is taken from

[22]. Compared to AdV, SR cavity is added and above all the filter cavity is installed to

realise FDS. From (b), one can see that indeed setting the detuning SR phase ϕSR to π/2

realises a broad band configuration for the sensitivity curve, compared to ϕSR = 3π/8.

For FIS both squeezing amplitude r and squeezing angle ϕ are constants. This only

improves performance at high frequencies since the error ellipse basically doesn’t get

ponderomotively squeezed, in agreement with the intuitive picture from Fig 2b even

the interferometer there is much simpler. The theoretical optimal FDS sensitivity curve

plotted from (3.5) is invisible since it completely coincides with the curve produced with

ϕ(Ω) by −αp(Ω) with FC parameter chosen by (3.8).

The action of a generic squeeze operator simultaneously realises a pure squeezing and

a rotation. But since the vacuum state is invariant under rotation, i.e., R̂(ϕ) |0⟩ = |0⟩, if
only the vacuum expectation and vacuum variance is computed, the effective action of a

squeezing operator on the quadrature operators can be seen as

Ŝ†(r, 0)R̂†(−ϕ)

(
â1
â2

)
R̂(−ϕ)Ŝ(r, 0) = S(r, 0)R(−ϕ)

(
â1
â2

)
. (3.6)

This means that in practice, the operation of a pure squeezing and rotation can be

performed separately. The former is realised by Optical Parametric Oscillator, and the

latter by Fabry-Pérot filter cavity (FC). The response of the quadrature operator going

through an FC is derived in Appendix B(
âfc1
âfc2

)
= −eiαm

(
cosαp − sinαp

sinαp cosαp

)(
â1
â2

)
, αp = arctan

(
− 2γfc ∆ωfc

γ2
fc −∆ω2

fc + Ω2

)
.

(3.7)
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For all practical purposes, one just has to match αp(Ω) with −ϕ(Ω). This can be done

with the help of machinary developed in [29, 35], i.e., choosing an intital squeezing angle,

finding roots of characteristic equation etc. It turns out, in the RSE regime of advance

detectors like LIGO and VIRGO, this matching is realised by setting both the detuning

angular frequency ∆ωfc and FC bandwidth γfc to a certain value

∆ωfc = γfc =
ΩSQL√

2
=

1√
2

tsr
1 + rsr

8

c

√
Parmω0

mTarm

, (3.8)

where tsr and rsr are amplitude transmissivity and reflectivity of the SR mirror. Parm is

the circulating power in the arms and Tarm is the arm FP input mirror power transmis-

sivity. This matching is shown in Fig 5b.

3.2 DRSE in VIRGO with one filter cavity

Although RSE can realise optimal squeezing with one FC, its marginal stability made

it difficult to function as ideally as planned. The higher order modes(HOMs) of carrier

laser generated inside the interferometer can leak out of SR cavity towards the photodiode.

Therefore the current VIRGO detector is designed to function at detuned RSE (DRSE)

regime to mitigate this problem, but with only one FC available so far for squeezing. In

this case the DRSE detuning other than the π/2 already present in RSE is defined through

ϕSR = π
2
+∆ϕDRSE. Optimisation of the choice of ∆ϕDRSE and FC parameters are realised

by numerical simulation using the Matlab code gwinc developed in the community, which

computes the total noise budget instead of only the quantum noise discussed so far. It

also takes into account of optical loss in current detector infrastucture. The performance

of the detector is evaluated by the binary neutron star (BNS) range computed with a

given signal-to-noise ratio of 8[20, 36]. From now on the carrier wavelength is set to 1064

nm.

The DRSE detuning satisfying |∆ϕDRSE| ≥ 70 nm
1064 nm

· 2π is able to reduce HOMs by a

factor of 10. To achieve a maximal BNS range without squeezing, the DRSE detuning

length is set to 70 nm which gives a BNS range about 88 Mpc, an improvement of ∼ 14

Mpc. The FC parameters, including FC detuning frequency ∆ωfc, the initial squeezing

angle ϕ0 and the input mirror power transmissivity Ti which determines the bandwidth

by γfc = TifFSR/2, are tuned to optimise BNS range by numerical calculation using

gwinc. All the other parameters of the interferometer are fixed in accordance with current

VIRGO design. The results are shown in Fig 6, Fig 7 and Fig 8.

4 Conclusion

In summary, the key concepts in quantum optics such as coherent and squeezed light

are illustrated by the canonical quantisaton of a monochromatic light field. The formalism

is generalised to a whole range of all possible continuous sideband frequencies, introducing

the two-photon formalism. Then such notions are applied to a simple Michelson interfer-

ometer, which expalins most of the quantum physics for the light in the interferometer.
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(a) Varying ϕ0 and ∆ωfc (b) Quantum noises

Figure 6: BNS range for varying the FC detuning frequency and corresponding quantum

noises for a few points. On the left panel, the input FC mirror power transmissivity is

set to Ti = 5.62 × 10−4 = 562 ppm (ppm stands for “part per million”). The color bar

represents BNS comoving range in unit of Mpc. The maximal BNS range is found to be

roughly 93.0 Mpc, with an improvement of ∼ 5 Mpc compared to the squeezing free case.

Optimal pair of
∆ωfc

2π
and ϕ0 is found at (153Hz, 29.4◦). The strain of quantum noises for

the optimal point and a few points are plotted with the same color as the points. This

suggests that in the current DRSE regime, even if the squeezing with one FC diminishes

sensitivity in the high and low frequency range, the BNS range improves. The typical

frequency of GW generating by BNS roughly should roughly in the range of (40, 110)

Hz.

(a) Varying Ti and ∆ωfc (b) Varying Ti and ϕ0

Figure 7: BNS range for varying the other 2 pairs of FC parameters. On the left pannel the

initial squeezing angle is fixed at 33.2◦. The optimal point is found at (159 Hz, 589 ppm),

where the maximal BNS range is roughly the same as above. On the right pannel the FC

detuning frequency is fixed at 153 Hz. The optimal point is found at (3.1◦, 1324 ppm),

where the maximal BNS range exhibits an improvement of 2 Mpc compared to the pre-

vious case.

16



(a) Optimization over 3 FC parameters (b) Quantum noises comparison

Figure 8: Overall optimization over FC parameters and the corresponding quantum

noises. The left pannel shows a 3D representation with the 3 FC parameters as axes

and color representing BNS ranges. The optimal point lies at (∆ωfc/(2π), ϕ0, Ti) =

(133Hz,−14.2◦, 1500 ppm), where the BNS range is maximized to be 95.7 Mpc. The

faces of the cuboid roughly repeat the pattern of the pair optimization. The right pannel

shows the comparison of quantum noises of optimal points in Fig 6b and the overall op-

timization. The overall optimization demonstrates a decrease of quantum noises at high

frequencies compared to the (∆ωfc, ϕ0) optimization, but the increase in BNS range is

modest. This again implies that the GW frequency for typical BNS inspiral roughly lie

in the range of (40, 120) Hz.

The input-output for the quadrature operators are derived. It is found that the vacuum

fluctuation entering the bright port of the interferometer does not affect GW detection

since the working point is locked at the dark fringe, in accordance with the physical

intuition from the rotating phasor picture. The vacuum fluctuation entering from the

dark port, on the other hand, does have the capability to introduce quantum noise to

the signal at the readout photodiode, compromising the sensitivity of the GW detection.

A crucial feature of this quantum noise is the ponderomotive squeezing and rotation

described by Eq (2.34) and (2.35) and Fig 2b. This squeezing and rotation brought

by the the interferometer response are to be counteracted by introducing the squeezed

vacuum in a frequency dependent manner, in order to achieve a reduction of quantum

noise over the whole frequency range.

In practice the FDS vacuum injected from the output port is realised by the action

of squeezing and rotation separately by the use of optical parametric oscillator and filter

cavity, thanks to the property of the invariance of the vacuum state of light field under

rotation. It turns out that for the dual recycled interferometers, in the broad band regime,

i.e., the case of RSE, an optimal choice of FC parameters allows to achieve the theoretical

ideal FDS, as is shown by Eq (3.7) and Fig 5b. But given the current DRSE configuration

of AdV+ due to the marginal stability of RSE and the leakage of higher order modes

accompanied by it, numerical simulation of FDS is done to evaluate how well the detector

functions with only one FC in the DRSE regime. The optimal SR detuning from RSE
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is set to ∆ϕDRSE = 70 nm
1064 nm

× 2π where 1064 nm is the carrier wavelength. For this the

BNS range is computed by varying the the FC parameters, including the FC detuning

frequency ∆ωfc/(2π) = 153 Hz, the initial squeezing angle ϕ0 and the input FC mirror

power transmissivity Ti which determines its bandwidth. Optimization over pairs of these

three parameters shows that at current FC configuration with Ti = 562 ppm, the maximal

BNS range is found at 93.0 Mpc, at (ωfc/(2π), ϕ0) = 29.4◦. Simultaneous optimization

over all three parameters shows a maximal BNS range of 95.7 Mpc at ∆ω/(2π) = 133

Hz, ϕ0 = −14.2◦ and Ti = 1500 ppm. Compared to the squeezing free case giving a BNS

range of 87.9 Mpc, the increase of BNS range is roughly 10%, giving an increase of about

30% of the accessible cosmological volume. This gives a qualitative assessment of the

improvement of FDS in the current AdV+ configuration, demonstrating its advantage

with respect to squeezing free AdV.

Not only will this optimisation strategy be instructive to the current GW detectors like

AdV+, but it will also help assess the costs and gains of future detector configuration.

For example, ET will be composed of 2 detectors, one optimized for the high signal

frequency and the other for low signal frequency. The latter will be operated in DRSE

configuration and need two FCs to further approach the optimal squeezing. The same

kind of similational work can in principle be conducted. This will allow to evaluate the

balance between the advantage of FDS by 2 FCs and the shortcomings of extra loss and

squeeze degradation brought by another FC. The ultimate goal is to boost the sensitivity

of GW detector to a new high level so that the accuracy of GW observation, the detection

rate and the fathest probable distance can be augmented. Working towards this goal can

bring impetus to the novel exciting field of multi-messenger astronomy, pushing forward

our understanding of fundamental physics of gravitation, astrophysics and cosmology.

A Calculation details and consistent sign convention

for squeezing and rotation operators

This appendix provides calculation details for the action of squeezing and rotation on

the quadrature operators. Although well documented in the literature, as far as is known

by the author, the community does not have a common sign convention for the squeezing

amplitude and the rotation angle. As a result, sign errors are not something uncommon

in the published literature. The purpose of this appendix is to form a self-consistent sign

for the convenience of theoretical investigation. The calculation is done for two-photon

formalism, but for convenience the canonical quantisation for discrete frequency will be

applied, i.e., the non-trivial canonical commutation relation is [âω, â
†
ω′ ] = δωω′ .

The rotation and squeeze operator are defined respectively as[30, 31]

R̂(θ) ≡ exp
[
iθ(â†+â+ + â†−â−)

]
, (A.1)

Ŝ(r, ϕ) ≡ exp
(
χ∗â+â− − χâ†+â

†
−

)
, (A.2)

with χ = re2iϕ and â± = âω0±Ω as in subsection 2.2. Notice that the sign of θ is different

from [31], for a reason that will be clarified later. Before moving on to see their action
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on the quadratures, a useful formula is worth mentioning. Suppose Â and B̂ are two

operators (not neccessarily commute), for x ∈ C it can be proved that

f(x) = exp
(
xÂ
)
B̂ exp

(
−xÂ

)
= B̂ +

x

1!
[Â, B̂] +

x2

2!

[
Â, [Â, B̂]

]
+ · · · =

∞∑
n=0

xn

n!
(adÂ)

nB̂,

(A.3)

by Taylor expanding the operator valued function f(x) and computing derivative to nth

order f (n)(x). Recall the expression for the quadratures

â1 =
1√
2
(â+ + â†−) â2 =

1√
2i
(â+ − â†−). (A.4)

Now when trying to compute R̂†(θ)â1R̂(θ), we can write

R̂†(θ)â1R̂(θ) = exp
(
θÂ
)
â1 exp

(
−θÂ

)
, with Â = −i(â†+â+ + â†−â−). (A.5)

Using the canonical commutation relation

[Â, â1] = − i√
2

[
â†+â+ + â†−â− , â+ + â†−

]
= − i√

2

([
â†+â+ , â+

]
+
[
â†−â− , â†−

])
= − 1√

2i
(â+ − â−) = −â2.

(A.6)

[Â,−â2] =

[
i(â†+â+ + â†−â−) ,

1√
2i
(â+ − â†−)

]
=

1√
2

([
â†+â+ , â+

]
−
[
â†−â− , â†−

])
=

1√
2
(−â+ − â†−) = −â1.

(A.7)

This is enough to see the Taylor expansion of the rotated â1 using the formula (A.3),

R̂†(θ)â1R̂(θ) =
∞∑
n=0

θn

n!
(adÂ)

nâ1 =
∞∑
k=0

(−1)k

(2k)!
θ2kâ1 −

∞∑
k

(−1)k

(2k + 1)!
θ2k+1â2

= cos θ â1 − sin θ â2.

(A.8)

The same calculation for â2 yields

R̂†(θ)â2R̂(θ) = sin θ â1 + cos θ â2. (A.9)

Hence

R̂†(θ)

(
â1
â2

)
R̂(θ) = R(θ)

(
â1
â2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
â1
â2

)
. (A.10)

The rotation matrix appearing here is the one taking the active viewpoint, i.e, it gives

the new coordinate of the rotated points in the old basis. A difference of the sign of θ
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correspond to the difference of active and passive viewpoint. However, the active view-

point better aligns with physical intuition because Heisenberg picture is used throughout

the main text. When talking about the squeezed or rotated vacuum the transforma-

tion is considered as acting on the observables, while vacuum state is still used to take

expectation values. It’s the vacuum that gets rotated and squeezed, not the readout

device, meaning we are measuring the new observables in the old basis. Hence the active

viewpoint is more appropriate for theoretical analysis.

One can proceed with the squeezing operator. For â1,

Ŝ†(r, ϕ)â1Ŝ(r, ϕ) = exp
(
Â
)
â1 exp

(
−Â
)
=

∞∑
n=0

1

n!
(adÂ)

nâ1, Â = χâ†+â
†
− − χ∗â+â−.

(A.11)

adÂâ1 = − χ√
2
â†− − χ∗

√
2
â+ ≡ B̂. (A.12)

(adÂ)
2â1 = [Â , B̂] = |χ|2â1 = r2â1. (A.13)

From here it can be deduced that

Ŝ†(r, ϕ)â1Ŝ(r, ϕ) =
∞∑
k=0

r2k

(2k)!
â1 +

∞∑
k=0

r2k

(2k + 1)!

(
−re2iϕ√

2
â†− − re−2iϕ

√
2

â+

)
= cosh r â1 − cos 2ϕ sinh r â1 − sin 2ϕ sinh r â2.

(A.14)

Together with the same steps of calculation for â2, the squeezed quadrature can be written

as

Ŝ†(r, ϕ)

(
â1
â2

)
Ŝ(r, ϕ) =

(
cosh r − cos 2ϕ sinh r − sin 2ϕ sinh r

− sin 2ϕ sinh r cosh r + cos 2ϕ sinh r

)(
â1
â2

)
= S(r, ϕ)

(
â1
â2

)
.

(A.15)

This coincides with the result of (2.10) for the monochromatic light, first derived by Caves

in [27]. The form of squeezing matrix S(r, ϕ) implies, making use of (A.10)

S(r, ϕ)

(
â1
â2

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
e−r 0

0 er

)(
cosϕ sinϕ

− sinϕ cosϕ

)(
â1
â2

)
= R(ϕ)S(r, 0)R(−ϕ)

(
â1
â2

)
=
[
R̂(−ϕ)Ŝ(r, 0)R̂(ϕ)

]†(â1
â2

)[
R̂(−ϕ)Ŝ(r, 0)R̂(ϕ)

]
.

(A.16)

This suggests that for a generic squeezing operator Ŝ(r, ϕ) with squeezing amplitude r

and rotation angle ϕ,

Ŝ(r, ϕ) = R̂†(ϕ)Ŝ(r, 0)R̂(ϕ), (A.17)

i.e., it is obtained by rotating the pure squeezing operator Ŝ(r, 0) by an angle of ϕ. This

is also Eq (3.16) in [31], but the authors derived it with the wrong sign of rotation angle.

Their definition of the rotation operator corresponds to the passive viewpoint of rotation,

which is in conflict with the Heisenberg picture.
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B Transfer matrix of the filter cavity

To derive the response of the filter cavity (FC) for the input and output mode, the

easiest way is to start from monochromatic light. Consider a quantum light field with

single angular frequency ω, an FC with cavity length l, input mirror amplitude trans-

missivity and reflectivity t and r, whose inner faces will induce a phase shift of π for the

light upon reflection, like the figure below.

l

âin

âout

â′in

â′out

Figure 9: Modes in the filter cavity.

It suffices to consider only the annihilation operator as in (2.2), ignoring the field

strength constant, the spatial dependence and the negative frequency part. Then one has

the linear relations

â′in = tâin − râ′out, (B.1a)

âout = râin + tâ′out, (B.1b)

â′out = −e2iklâ′in. (B.1c)

Say the frequency ω is the upper sideband frequency ω0 +Ω, the phase φ = 2kL, defined

up to modulo 2π can be written as

φ = 2
ω

c
l = 2

ω0 + Ω

c
l =

ω0 + Ω

c/(2l)
=

Ω− (2πNfFSR − ω0)

fFSR
=

Ω−∆ωfc

fFSR
, (B.2)

where fFSR ≡ c/(2l) is the free spectral range, the smallest frequency in resonant with

the cavity, and N ∈ N such that Ω < 2πfFSR. 2πNfFSR − ω0 is the detuning angular

frequency of FC with respect to the carrier. From the linear relations (B.1),

âout =

(
r − t2eiφ

1− reiφ

)
âin ≡ rfcâin. (B.3)

In practice, the FC used in experiments satisfied φ ≲ 10−2, and the input mirror trans-

missivity is also small. Applying Taylor expansion to first order

eiφ ≈ 1 + iφ r =
√
1− t2 ≈ 1− 1

2
t2, (B.4)

the reflectivity of the whole FC for the upper sideband can be approximated as

rfc ≈ −1 + iξ

1− iξ
= −eiαfc , (B.5)
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where ξ = 2φ/t2, and αfc = 2arctan ξ.

To extend the result to two-photon formalism, just notice(
b̂1
b̂2

)
= A

(
b̂ω0+Ω

b̂†ω0−Ω

)
= ATfc

(
â+
â†−

)
, (B.6)

where for simplicity â stands for input mode and b̂ for output mode, and

A =

(
1√
2

1√
2

1√
2i

− 1√
2i

)
, Tfc =

(
rfc+ 0

0 r∗fc−

)
. (B.7)

Hence, the input-output relation of FC for the quadratures is computed as(
b̂1
b̂2

)
= ATfc A

−1

(
â1
â2

)

=

(
1√
2

1√
2

1√
2i

− 1√
2i

)(
rfc+ 0

0 r∗fc−

)( 1√
2

− 1√
2i

1√
2

1√
2i

)(
â1
â2

)
= −eiαm

(
cosαp − sinαp

sinαp cosαp

)(
â1
â2

)
,

(B.8)

where

αm =
αfc+ − αfc−

2
, αp =

αfc+ + αfc−

2
, αfc± = 2arctan

[
2

t2fFSR
(±Ω−∆ωfc)

]
.

(B.9)

Finally (B.8) can be further written as(
b̂1
b̂2

)
= −eiαmR(αp)

(
â1
â2

)
, αp = − arctan

(
2∆ωfcγfc

γ2
fc + Ω2 −∆ω2

fc

)
, (B.10)

where γfc = t2fFSR/2 is the bandwidth of FC. This is just Eq (3.7) in the main text. The

overall phase factor −eiαm does not have any effect on the noise spectral density.
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