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Abstract

The nearest neighbor hopping tight binding model on the honeycomb lattice of
graphene gives rise to the relativistic desciption of electrons with a zero effective
mass and linear dispersion relation, in low energy regime. If inversion symmetry is
broken, the energy bands can open a gap. This work mainly studies the emergence
of a single isolated state in this gap called bound state, which is induced by a local
atomic impurity. Both analytic and numerical approach are adopted to compute
the local density of state (LDOS) of gapless and gapped graphene, which is a
direct expenrimental observable. Specifically, the far field behavior of LDOS is
predicted by the Green function method in the continuum limit. It demonstrates an
exponential decay inside the gap and Friedel oscillation pattern in the band, as well
as the additional wavefront dislocations induced by the impurity. The emergence of
bound state, the near impurity behavior of LDOS are shown by the tight binding
numerical calculation. The wavefront dislocation for gapless graphene and spatial
decaying behavoir for gapped graphene are recovered. A sharp peak right at the
bound state energy does appear for DOS near the impurity at several fixed sites as
a function of energy. A connection and agreement between the continuum analytic
and discrete numeric approach is also built by computing the bound state position
dependence on the impurity strength.
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1 Introduction

A new era was opened for condensed matter physics since 1980s, with the introduction
of the concept of topology and topological order into the field. The discovery of quan-
tum Hall effect[1, 2] shaked the foundation of the two cornerstones of condensed matter
theory(3], the Landau Fermi liquid theory and Landau’s symmetry breaking formalism.
Topology has played a key role to explain the robustness of this new kind of order for
matter[4]. The geometrical phase induced by adiabatic evolution discovered by Berry|5]
can be used to establish connections between the wavefunction and topology.

As the experimental technique and theoretical development continue to advance,
the band structure topology of Dirac material has gained increasing attention over the
decades. For the most celebrated Dirac material, graphene, the linear dispersion relation
and pseudospin degrees of freeddom from two inequivalent sublattices has been revealed
by scanning tunnelling microscope (STM) experiment[6]. In addition to the adiabatic cy-
cle in the presence of magnetic field demonstrated by anomalous quantum Hall effect|7],
the wavefront dislocations in Friedel oscillation induced by an atomic impurity also serves
as a complementary approach to measure the quantized m-Berry phase from pseudospin
winding[8]. Moreover, for graphene with inversion symmetry breaking, the bands open
a gap and such atomic impurity can generate an isolated bound state in the band gap.
Probing the properties of this bound state will give further information about the elec-
tronic band structure, which is not only interesting in view of theoretical understanding
but is also the prerequisite for the potential application in technologies. This is what the
present work is devoted to.

This report is organized as follows. Section 1 uses second quantization language to
describe nearest neighbor tight binding model of graphene, with a focus on low energy
regime. It also presents the Green function method used to calculate the local density
of state (LDOS), an experimental observable. In section 3, the results of analytic cal-
culations in the continuum limit is presented, demonstrating the Friedel oscillations and
exponential decay for gapless and gapped graphene in the band gap respectively. Section
4 presents the results from tight binding numerical computations, including a reconstruc-
tion of wavefront dislocations for gapless graphene, the emergence of bound state for
gapped graphene and its LDOS. Finally, section 5 summarizes the results and points out
future work that can be done.

2 Theoretical preliminary

2.1 Tight binding on a honeycomb lattice

The honeycomb lattice has a primitive cell containing two carbon atoms, which under
translation of basis vectors a;, a, can pave the whole 2D plane. These two atoms,
labelled by A and B, form two inequivalent sublattices on the plane under translation.
The electrons on each A site can hop to 3 nearest B site, and vice versa for electrons



on each B site. A schematic sketch is shown in Fig 1. Therefore, the tight binding
Hamiltonian in position space can be written as

H:tZZCE(rA+5a)cA(rA)+h.c.. (2.1)
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Figure 1: A schematic sketch of the graphene lattices. (a) shows the real lattice with a size
N = 3 on both directions of basis vectors a; and as. In numerical simulation the size N is
much larger than 3 and periodic boundary condition is applied. This means the diamond
shaped by the dashed line forms a torus. The lattice constant is roughly ag ~ 1.42A.
Electron at each A site can hop to three nearest B site separated by &;, i = 1,2,3 and
vice versa. Throughout the work an atomic impurity is introduced at one A site chosen as
the origin. (b) shows the reciprocal lattice, with b; and by as the reciprocal basis vectors.
Three choices of first Brillouin zone (BZ) are shown by hexagon, blue diamond and black
diamond. The solid line Wigner-Seitz cell is conventional and its vertices are the valleys.
In numerical calculations, the data are sampled in the blue diamond corresponding to
the torus in (a). Sometimes the black dashed diamond is more convenient for calculation.
The 3 choices are all equivalent up to a shift ot b; and b, of some parts of them.

For a graphene monolayer, the lattice constant and the hopping amplitude are roughly
ap ~ 1.42A and t ~ —3 eV. Under a lattice Fourier transformation ¢,(r;) = \/LN S e Tic,(k),
where a labels the sublattice A or B, (2.1) can be written as

Hjt =3 ci(k)[H(k)], k), (2.2)

where the Hamiltonian matrix for one momentum value takes the 2 x 2 form, with the
dimension 2 arising from sublattice d.o.f,

H(k) = (ZS O_ikﬂa Za:1 eik-éa) = dy(k)o1 + day(k)os. (2.3)

a=1°€ 0



01, 09 are the Pauli matrices. The Hamiltonian for a massive gapped graphene simply
writes H(k) = dy(k)oy + da(k)oy + Mos. Physically it means the A and B sublattice are
no longer the same type and inversion symmetry is broken. In real space, this mass term
corresponds to an on-site energy M on the A site and —M on the B site.

For gapless graphene it can be easily verified form (2.3) that at the momentum value

b, — by

kE=KS =¢ + mby + nby, E=4+1, mneZ, (2.4)

the energy of the system E(k) = £/d;(k)? + d2(k)? vanishes. These points are called the
Dirac points and & = +1 signifies two inequivalent valleys. Adiabatic transport around
these valleys brings a m Berry phase, which is a smoking gun signature of band topology
that has been verified[7, 8]. If in the momentum space, one focuses in the vicinity of the
Dirac points and Taylor expand H(KS, + q) in (2.3) up to linear order of g

0 £QUF€i§9q
H(KS = . 2.
R P § 2:5)

with the Fermi velocity defined as vp = %aot, and the linear dispersion relation E. (K¢, +
q) = Tvpq. As is shown in Fig 1b, the first BZ only contains 1 pair of valleys. In the
subsequent discussion it suffices to consider the pair enclosed by the black dashed line
BZ, with m, n indices in (2.4) as 0,0. The m,n = (0, 0) indices for the valleys are omitted
from now on.

2.2 Green function and 7T-matrix formalism

The T-matrix formalism is widely used to calculate the analytic expression of LDOS
in the presence of impurity[9, 10, 11]. For a system governed by Hamiltonian Hy, the
starting point is the retarded Green function in energy domain G (w) = 1/(w+i0" — Hy),
which comes from the forward propagation amplitude in time domain. The infinitesimal
imaginary part added to energy w comes from causality and emphasizes the forward
propagation. It turns out that the imaginary part of diagonal element of GO (w) in a
certain resprentation {|a1) , |ae) , ... } actually signifies the intrinsic probability amplitude
for the system to be in state |o;) and energy range (w, w + dw), apart from a factor of 7=1.
In particular, if the chosen representation is position representation, the corresponding
quantity is defined as the LDOS

p(r;w) = —%Im [G(O)(r,r;w)} . (2.6)

For a perturbed system with Hamiltonian H = Hy+V, the Green function is expressed
in the form of Dyson equation G(w) = GO(w) + GO (w)VG(w) (for simplicity, the hat
for abstract Green function before choosing any representation is omitted from now on).

The intricacy of the Dyson series can be encoded in the so-called T-matrix denoted as
T(w)

G(w) = GOw) + GO(W)T ()G (w), T(w) =V + VGO Ww)T(w), (2.7)

4



where the solution to the T-matrixis simply writes T'(w) =V [1 — GO(w)V] ' And in
this case, one is usually interested in calculating the LDOS modulation defined as

dp(r;w) = —%Im [(r| GO(W) T (w)GO(w) )] . (2.8)

In the case of point impurity to be analyzed below, V' is modeled by delta function, either
Dirac delta in continuum case or Kronecker delta in discrete case.

3 Analytic calculations in the continuum limit

For a point impurity located on the A site chosen as coordinate origin, the matrix
element of potential V' is (a, 71|V |b,72) = Vodr, ry0r 00ap0aa- The indices a, b stand for
sublattice degrees of freedom. In the monolayer graphene, the system possesses transla-
tional invariance. Eventually the LDOS modulation can be written as

B
1
Sp(r,w) = —— 3 m [(a,7] (O ()T (@) GO () |a,7)]
L . , (3.1)
Sy ok G, 0,w) VG (—7,0;w)
ey 1—Gh(0,0;w)Vy

V/ is the impurity strength in the continuum limit and has the unit [energy] - [length]”.
Because of translational invariance, the Green function matrix is diagonal in momentum
representation (although not diagonal in sublattice degrees of freedom). Hence, in the
continuum limit, the real space Green function can be obtained by the Fourier transform

integral. First analyze gapless graphene without the mass term,

@Oir-0 — [ 2 e

e [T ey D
B : re (27)2w? — (vpq)? \Equpe %la w '

The form in (2.5) is used. And the approximation of integrating over the whole 2D plane
is assured by the suppresing factor 1/(w? —v%¢?). Technically, the integral is contributed
by the two poles on the real axis. This will change for the massive gapped graphene. The

technical details are relagated to Appendix A. The result of the integral gives the Green

function as

iH () g ()
‘ (li (1) ] (3.3)

¢ Ee "0 H; (%) iHy <ﬂ)

UF

where Hél)(ac), H 1(1)(1’) are zero and first order Hankel function of the first kind. The
LDOS modulation, considering all the possible scattering among the valleys, is thus



obtained from (3.1) as|§]

ZC’ Im [ (H (wr/vﬂ)z} cos(AK -r)
& (3.4)

—C Im {th(w) (Hf”(wr/w))? &€ cos(AK - r — AEH,.),

where C'is a constant independent of energy and position. t(w) = V{/ (1—G(0) (0,0;w)Vy).
AK = K' — K . The oscillation pattern appearing here is dubbed Friedel oscillation.
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Figure 2: LDOS in Eq.(3.4) for one pair of inter-valley scattering. The impurity strength
chosen to generate the data is Vy = 1545¢t. (a) shows the radial dependence of the
prefactors before the cosines, achieved by integrating the expressions over w up to the
bias voltage of the STM tip V, = 0.4 eV. This choice of bias voltage corresponds to [8].
It’s rescaled with respect to dp(r = 0.14 nm). (b) shows dpa(r,V, = 0.4 eV). The data in
(b) is multiplied by 7? to enhance visibility. There is no wavefront dislocation. (c) shows
dpp(r,V, = 0.4 eV). There are exactly 2 wavefront dislocations sourced by the vortex
field in the phase. (d) displays the total LDOS from the two sublattices. The wavefront
dislocations are less obvious but still tractable if examined very carefully.



At large distance it displays a dominant 1/r decay for monolayer graphene, due to the
asymptotic behavior of the Hankel functions at r — oo

2 . . . 2 3
2irw _ im 21} VX 5,U 1
2O N i Y U b F o Wp i oL .
[ ° (UF o Trw  2rriw? 167rr3w3+ ré (3.5)
2irw _ 3im 2U 37/0 SU 1
HO ()]~ e (20 F F_1o(=)). 3.6
{ b \or o Trw - 27r2w? + 167r3w3 + r4 (3.6)

Treat dp(r;w) as a wave field, the phase of the second term in (3.4) admits a contribu-
tion from a vortex field for inter-valley scattering A¢ = 2, which sources the wavefront
dislocations[12]. These wavefront dislocation are also experimentally verified[8]. A plot
of this pattern for one pair of inter-valley scattering event from the analytical expression
(3.4) is shown in Fig 2.

For the massive gapped graphene, the Hamiltonian H (k:) differs from (2.3) from

M, —M on the diagonal. The dispersion relation becomes E(k i\/ di(k)? + da(k)? + M2,
Repeat the same procedure as above to compute the Green functlon in real space G (r,0;w)
and the LDOS modulation. In the energy range |w| > M, the Friedel oscillation pattern
doesn’t change essentially. What’s interesting is to look in the band gap —M < w < M,
where the integral in (3.2) only has contribution coming from the poles on the imaginary
axis. Again, technical details can be found in Appendix A. The result is

KT (w4 M)EKo(E)  —i€Qer K () .
—igoe i (B (- an(ln ) D

G(O)(T,O;w) = 22

where Q = vV M? —w? € (0,M). Ky(x) and K;(x) are the zero and first order modi-
fied Bessel function of the second kind. It’s purely real for real argument and admits
asymptotic behavior at r — oo

KO(@)NW(fﬁ VEGE)  9VE(§) O<1/r;>> 53)

vp T 8r3/2 128r5/2

Kl(&)ge-%fﬁ 33 () 15f<w>5/2+0(1/r;))_ 39

vp N\ 832 128,5/2

Around the middle of the gap w =~ 0, the characteristic declay length is vp/2Q ~
(3/4)aopt/ M.

When applying (3.7) to (3.1), one has to substitute w with w + in and first treat the
Green function as if it’s complex, then taking limit 7 — 07 gives LDOS modulation

5 1 VoRe [Gg(r,O;w)G%(—r,O;w)} Im |:—‘/0/GE4OI)4<T7O;CL)>i|

i [1 ~ V{Re (G(jjl(o, o;w))r + [Im (—VdGﬂ('f‘a 03@)]2'

dp(r,w) = (3.10)

The whole expression gives 0 unless both numerator and denominator vanish, since in
the band gap the Green function is purely real. Making use of the property of of Dirac



delta function lim., £ = §(B(w)) = - w’;f in (3.10), where wy is the solution

L S
T B@)+7 BT

simultaneously satisfying
Im —%’GE&(T,O;w)} ~0, Ew)=1-VRe (GAA(O 0; w)) — 0. (3.11)

Then the LDOS modulation gives

B

dp(r,w) = ZRe [Gg(r,ﬂ;w)Gfi(—r, O;w)]

a=A

d(w — wp)
_. 3.12

2 (342
A single isolated state with energy w;, appears in the gap due to the presence of the
impurity. This is the so-called bound state. The spatial pattern of the local density of
state for such a bound state is highly localized around the impurity, as is evidenced by
the asymptotic behavior of exponential decay at large distance.

The continuum analytic calculation predicts the existence of bound state. However,
it fails to predict the position of the bound state in the gap. When one tries to solve the
second equation in (3.11),

Vo Ny (w +

1—VRe[G (0,0; )}:1 ™) ko (0) = 0. (3.13)

2mv,
N, is the number of valleys involved. Ky(x) diverges at x = 0 and renders the theory
pathological. In fact, the continuum calculation cannot be trusted anymore when it gets
too close to the origin, i.e., to the impurity, since there are still a finite distance from
the impurity to its neighbor carbon atom at the order of ay ~ 1.42A. Heuristically, a
cut-off at the lattice scale approximately at r ~ ay can be introduced to (3.13), taking
into account the definition of Fermi velocity vp = %aot and the number of valleys N, = 2,

W (e ) () ) - em

Vo = Vj/(Ba3) is the impurity strength in discrete lattice and is referred to as impurity
strength from now on. The argument of Ky({2r/vg) is chosen exactly at r = ag. The

determination of numerical factor § will be illuminated in comparison with the data
coming tight binding numerical computation.

4 Tight binding numerics

In this task, the periodic boundary condition is adopted on both a; and as direction.
The number of unit cells N chosen on both direction is the same N = 102, such that the
sampling of lattice points in momentum space will go through the Dirac points. When
the Hamiltonian is diagonalized as H = ) €adl d,, the eigenvectors U, appearing in
the expression of these quasi-particle creation and annihilation operators

di =" (layel =Y Uac)  da=> (alie; = Une (4.1)
i j J

i
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Figure 3: The energy bands for massless and massive electrons. The numerous black dots
are the numerical solutions €, to the Hamiltonian in real space. They lie almost exactly
on the bands plotted according to analytic solution. The bands are plotted as a function
of the indices m,n for wavevector k = by + 1bo.

are nothing but the position space wavefunctions for various energy eigenstates with
eigenenergy €,. The Hamiltonian matrix is real and symmetric, so the software will au-
tomatically return real eigenvectors. This corresponds to a superposition of the plane

wave eigenstate e*" and e~ 7

with the same eigenenergy €, such that the resulting
wavefunctions are purely real in this energy subspace. The upshot is that the probabil-
ity density |U]-O¢]2 and the LDOS for electrons in pristine graphene both exhibit a wavy
behavior as a signature of standing wave, be it in the massless or massive regime. This
is purely an artificial effect from numerical computation. According to Heisenberg un-
certainty principle, the electron completely localized in momentum space, such as in this
case, will be completely delocalized in the position space. The translational invariance
suggests that no lattice site should be preferable than the others in the absence of im-
purity. So the strategy for computing the LDOS in numerical method is modified. One
only computes the LDOS of the contaminated graphene, without subtracting the LDOS
of pristine graphene which involves the artifact of standing wave behavior.

The numerical calculation of energy spectrums for massless and massive pristine
graphene agree fairely well with the analytical result, as is shown in Fig 3. This serves
as a validity check of the code to simulate the Hamiltonian.

4.1 Gapless graphene with impurity

The impurity is located only on one A site chosen as the origin and its strength
is chosen as Vy/t = 1545. The simulated LDOS data p(r;w) contains the pattern of
oscillation coming from scattering among the valleys. The Fourier transform of the data
p(r;w) is obtained for both A and B sublattice, for the energy value w = 0.13¢, which
correspond to the choice in Fig 2 of Dutreix et, al[8]. The Fourier transformed LDOS
in momentum space is plotted in Fig 4. One can see the dominant signals coming from
inter and intra-valley scattering as they peak. Using Gaussian wavepacket to filter out
only the inter-valley scattering, the reconstructed LDOS in real space by inverse Fourier
transform are plotted in Fig 5. The two wavefront dislocations appear in the total charge
oscillation.
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Figure 4: LDOS for contaminated gapless graphene in momentum space, plotted as
the black dashed line shaped diamond BZ in Fig 1b. By a suitable translation of b;
and by the diamond shaped first Brillouin zone can be made into traditional hexagon
shape. The impurity strength is Vy = 1545¢. It’s plotted for energy w =~ 0.13t. The
peak in the center corresponds to intra-valley scattering. The peaks on the two valleys
K¢ = £(by — by)/3, (£ = 1) correspond to inter-valley scattering. This pattern agrees
with the results found in [10]. The filtering in momentum space is done by Gaussian
wavepackets around the two peaks opposite to each other with respect to the origin, with
a standard deviation o = b/8v/3, where b = |bi| = |by|.
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Figure 5: The filtered real space LDOS obtained from inverse Fourier transform for con-
taminated gapless graphene. The plots shown here are the norm of the data p(r;w), with
a small imaginary part arising from the finite width of Gaussian filtering wavepackets. In
these plots, it’s on average 3 to 4 orders of magnitude smaller than the real part, for the
standard deviation chosen as ¢ = b/8+v/3. It can be made even smaller by decreasing this
width o. The data is multiplied by 10* for the convenience of colorbar display. Several
wavefronts are labelled by white dashed line. The two dislocations appear in pg(r) and
the total p(r) but is less obvious in the latter.
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Figure 6: Bound state position for various impurity strength and eigenenergy distribution
for Vo = —5t, M = —2t. In (a), the dashed lines are plotted according to Eq.(3.14). The
area of the primitive cell for graphene honeycomb lattice is exactly Ba2 = (3v/3/2)a2.
This choice of § corresponds to the blue dashed line in (a) and is in agreement with
the numerical data. A zoomed in view exhibits a threshold of impurity strength for the
appearance of bound state. In (b), the eigenenergy €, = Vj is excluded from the plot.
The three colored points are selected to plot the spatial pattern of LDOS p(r;w). The
bound state is labelled by red. Its location near the center of the gap makes its property
most pronounced, which will be shown by the sharp peaks in Fig 7 and Fig 8. As is
shown in (a), a larger impurity strength brings the bound state closer to the lower band
edge. The signal of bound state in DOS will also be less significant.

4.2 Gapped graphene with impurity

The analytic analysis predicts the existence of bound state in the band gap, but
fails to predict its position, due to its failure near the impurity point. From numerical
simulation with the choice of mass M = 0.2¢, the bound state position in the gap for
various impurity strength is calculated and plotted in Fig 6a. Remarkably, it’s almost
exactly predicted by the heuristic cut-off in analytic expression at r = ag, provided
that the area factor  in (3.14) is accounted for by the unit cell area. This builds a
strong connection between analytic and numerical treatment. The eigenenergies solved
for Hamiltonian with parameters Vy = —5t, M = 0.2t is plotted in Fig 6b. This choice
of parameter is to make the bound state appear near the gap center so that the bound

state signature is most pronounced.

The density of state at a few sites around the impurity pa(w) and pg(w) as a function
of energy w are displayed in Fig 7 and Fig 8.The sharp peak at the bound state is a
signature of Dirac delta function in the analytic results. In addition, the spatial pattern

11



of real space LDOS for the three energies selected in Fig 6b is plotted in Fig 9 and Fig
10. The same Fourier analysis and filtering is done for LDOS at the bound state energy
p(r;wyp). This is shown in Fig 11 and Fig 12. The rapid decaying behavior over a few sites
are again recovered. But no exponentially suppressed wavefront dislocation is displayed.
It should result from the absence of inter-valley scattering for B sublattice in Fourier
space shown in Fig 11b. This seems to be at odds with the analytic result (3.12). It
suggests a limitation of the numerical calculations performed here, probably due to an
improper choice of parameters or a limited lattice size.
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Figure 7: pa(w) for sites (00), (10), (01), (11) respectively. A very sharp peak arises
right at the position of bound state labelled by red in Fig 6b, in the otherwise flat band
gap. The sharp peak is a signature of the Dirac delta function in (3.12). This is another
aspect of the agreement between analytic and numerical approach.
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Figure 8: pp(w) for sites (00), (10), (01), (11) respectively. Again there’s a sharp peak
at the bound state, as a signature of Dirac delta function in analytic result (3.12). The
energy dependence for B sublattice behaves the same for the sites near the A impurity.
This again shows different response of LDOS to the impurity for A and B sublattice.
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Figure 9: pa(7r;w) for sublattice A at the three energy values. The origin is shifted to
the center, compared to Fig 1a, due to periodicity. Only the bound state energy plot is
not zoomed in. It decays to zero after just a few sites from the impurity. Such a rapid
decaying behavior qualitatively agrees with the results in analytic method. The spatial
pattern obeys symmetry of reflection about the direction a; 4+ as and a; — as, as it should
be since the local impurity is located only on one A site located at the origin.

14



x/a x/a
00w 0w
i
¢
1100 | & 100
*
3 ‘ b L& 3
[l 03 Il 0 M v 03
y
' »
s 3
+100 1100
5 10 15 0.006  0.010  0.015 0.005  0.010  0.015
pB(F, wb/t = 0003) pB(F, we/t = 02) pB(F, wbk/t = 10)
(a) pp(r;w) for w at bound state, band edge and band bulk
x/a x/a
-0 0 10 -0 0 1p

5 10 15 0.02 0.04 . 0.02 0.04 0.06
pB(F, w;,/t = 0003) pB(F, we/t = 02) pB(’F, w;,k/t = 10)

(b) Middle and right panel zoomed in

Figure 10: pp(r;w) for sublattice B at the three energy values. Again only the bound state
energy is not zoomed in. The pattern for w, and w, are almost the same for B sublattice,
except for the numerics. The B lattice LDOS responses to the impurity differently from
that of A sublattice. It’s only symmetric by reflection about the direction a; + as, which
makes sense since the impurity lies right above the B atom at the m,n = (00) site.
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Figure 11: The real part of Fourier tranform of the LDOS for bound state shown
in left panels of Fig 9 and Fig 10. For A sublattice both intra and inter-valley

scattering are present.

But for B sublattice there is only intra-valley scatter-

ing. Superimposing the two gives only dominant signal for intra-valley scattering.
Again, Gaussian wavepackets around the two valleys are used to filtered the signals
around them. The width is chosen as 0 = b/ 164/3. This leads to the results shown

in Fig 12.
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Figure 12: The filtered bound state LDOS. The bottom three panels show the data in log
scale. Most of the behavior of the left panels of Fig 9 and Fig 10 are recovered, including
the rapid decay around the impurity, the reflection symmetry about certain axes for the
two sublattices. The data p(r;w) shown here are multiplied by a factor of 10* for the
convenience of colorbar display. The absence of wavefront dislocation might be due to
the absence of inter-valley scattering in Fig 11b.

5 Conclusion

In summary, the analytic and numerical method are both applied to study the gapless
and gapped monolayer graphene, in particular the isolated bound state in the middle of
the gap induced by an atomic impurity. Some agreements between these two approaches
are established, demonstrating the efficiency of this dichotomy.

The main result is the calculation of LDOS, an experimental observable probed by
STM. In analytic analysis, for gapless graphene the LDOS is shown to display Friedel
oscillations and wavefront dislocations induced by the vortex field in the presence of
impurity. The LDOS for the case of massive electrons on graphene exhibits an exponential
decay inside the band gap, with a characteristic decay length lgecay ~ aot/M. The analytic
result in the continuum limit predicts the existence of the bound state inside the gap but
fails to predict its position, because the real system is after all in the form of a discrete
lattice. In tight binding numerical calculations, the spectra of the Hamiltonian for the
two types of graphene are computed. In particular, the position of the bound state in
the gap is calculated for a set of impurity strength, which considerably agrees with the
cut-off in the analytic expression taking into account of the area factor of a unit cell in
graphene honeycomb lattice. The eigenenergies and wavefunctions serve as the input to
calculate the LDOS which mimic experimental data. This allows to build several other
connections between analytics and numerics. For instance, for gapless graphene, the
wavefront dislocations are vaguely reconstructed from Gaussian filtering of LDOS data
in Fourier space. For gapped graphene, the rapid exponential decaying behavior of LDOS
for bound state is recovered. The DOS as a funtion of energy w exhibits a sharp peak
right at the value of bound state energy, which is a signature of Dirac delta function in
the analytical expression. Finally, the same Gaussian filtering technique is attempted to
recover the exponentially suppressed wavefront dislocations for bound state. But within
the numerical limitations of the tight binding computations performed here, we were
unable to extract the signal of analytically predicted spatial modulations.

Improvement and generalization can be done. One can try to improve the resolu-
tion of wavefront in the filtered LDOS data, by trying to increase the size of lattice if
computational power allows. The reason for the absence of inter-valley scattering and
the wavefront dislocation for the bound state is yet to be examined. Once the work on
graphene is completed, one can start to consider a magnetic point impurity on other
types of 2D material, such as transition metal dichalcogenides (TMD), where electrons
with different spins react differently to the impurity. How will the bound state be gen-
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erated in such scenario? And what will be its difference from the case of non-magnetic
impurity considered in this work? These questions can be explored in the future by both
theoretical and experimental work.

A Calculation details for analytic Green function

This appendix presents some details about using some complex analysis to compute
the analytic expression of real space Green functions. It’s adapted from appendix B,C
of [9]. For simplicity, the Fermi velocity is set to vp = 1 during the calculations and
restored in the final results.

Two integrals will be frequently used in the subsequent calculation.

2 2M
(1) B dg q i
IM,N(’r?w) = /RQ (271—)2 2 q2N€qr’ (Al)
dq2 q2M ) L.
2 7 q-r
st = = | Ty (4 e (22)

For I](\}?N(r, w), making use of the integral definition of the integer order Bessel function

Jn(z) and the result
> dusin(gru)

. \/7 5 Jo(qr) (A.3)

I](\}?N(r, w) can be written as

[e’s) 2M+1
(1) _ dg ¢
Lyn(r,w) = /O o — N Jo(qr)

/°° dg ¢*M+! > du sin(qru)
. T W q2N T Vi1

/+oo /+oo d q2M+1 sm(qru) (A4)
T o2 Vu — 2N

1 /+oo QNZI 1 /d sin(qru)
2m? /4 Vu? —1 = QNQ%(Nfol) R 1 G —q

¢n = wYNe'¥7 is the nth (n from 0 to 2N — 1) simple pole of the integrand over ¢, among
the 2N simle poles. ¢y and gy are the poles lying on the real axis. The distribution of

poles is shown in Fig 13. For the monolayer graphene considered in this work, N =1
suffices. The case of a generic positive integer N can be used to study the Green function
of N-layer graphenel[9].

For I}JQ}W’N(T, w), a recursion relation with IJ(\}[?N('P, w) can be built.

dq2 q2M ) L.
1(2) — _/ 1£0q iq-r
LN (75 w) e (2m)2w? — 2N (ge™™) e

0 OMA1 L ifLOn [27
_ _/ g_q g _ q 62 / (10,51 0a=b2) i cos(Oa—0r) (A.5)
0 TW" —4q T 0

dq q2M+ ; -
__5/ oz TR ),
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Figure 13: Simple pole distribution for ¢, in (A.4). In the last line of (A.4), the sin
function can be written as %(eiq’"“ + e~“™). The integration contour closes either on
upper plane or lower plane depending on the position of the pole ¢, considered. For
example, in (a) the contour is for the term involving ¢gz. However at large distance only
the two poles on the real axis contribute. And these are the only poles for the case of
monolayer graphene N = 1 considered in this work, as is shown in (b). The principle
values for these two terms are realized by the infinitesimal semi-circle contour and residue
theorem.

where in the last line the integral definition of integer value Bessel function is used again.
Notice the recursion relation of the Bessel functions

Jular) = (M) (2 E5 ) nlar) (A0

Igw,N(T» w) can be further written as

2 iLE@br+ T 1d\" [~dg ¢
[é,g\/[,N(""aw) = _fLe L& +2)(_1)L7"L (;E ; %mh(qr)

(A7)

L
_ _£L€¢L§(9T+g)(_1)LTL (li) 7 (r,w)
N rdr MNAT =

From (3.2), setting vp = 1, the Green function for gapless graphene becomes

. 1) (2)
G(O)(r, 0;w) = Z oK W{gs} (r,w) 511,(()1,)1(raw) 7 (A.8)
5 511,0,1@“7“) u}-]0,1 (r,w)

where ]f?g;l('r, w) is just Il(?g’l(r,w) with 60, substituted by —6,.. Thanks to the recursion
relation (A.7), once Iy;(7r,w) is calculated, it’s done. From the last line of (A.4),

1 [ du 1 * sin(gru) > sin(gru)
o :_/__/—d / dg) .
071(7“,0)) 272 J, /u2_1><2 o W0t —¢q 7t —oo —(wHi0F) —¢q !
(A.9)

From the famous result[13]

im [ L@ / b %dx q: / i — ) f)de, (A1)

=0+ J_oo T — X9 L in .
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the first integral in the bracket in (A.9) can be evaluated as
/°° sin(gru) sm(qru) n /°° g ) sin(gru)
— = —w)s
pR—T dg = im | dgd(g —w)sin(gru

oo q—w 00

msinra)
— (m cos wru) vin sm(wru))

(A.11)

In the last line, the residue theorem is used to compute the principle value. For the second
integral in bracket in (A.9), the same result is obtained following the same procedure.
Thus [(3711) (r,w) is finally calculated as

1) 1 o0 eiwru

1), w) = - du = — 2 H (wr). (A.12)

% 1 U2—]_ 4

From the recursion relation and (A.8), the real space, the real space Green function for
gapless graphpene is finally obtained as

. _iw () Wit
G<°>(r,0;w)=ZeZK5"‘< iy lwr) ke Hl("‘”)). (A.13)

w ¢, —i€0p iw 1
: —<e O H (wrr) —zHé )(wr)

Restoring the vp will just give (3.3) in the main text.

For gapped graphene, the integral expression of the Green function, compared to (3.2),
becomes

2 igr €6
K e w+ M  Egete
(r, 0) Ze / 2m)2 w2 — M2 — ¢2 (ﬁqe_iwq w—DM)" (A-14)

If |w| > M, i.e., in the energy range outside the band gap, the procedure is the same as
above, with the role of w replaced by 2 = v/w? — M?2. The Green function for gapped

graphene in this energy range is

GOr,0;w) =

Ko (—i(w+ MYHM () Qg B! (F)
4%

Qfe_iga"Hfl)(%) —i(w — M)H, (ﬂ_)> (A.15)

o

The LDOS modulation calculated from (A.15) will still display the Friedel oscillation.

However, inside the gap w € (=M, M), the calculation is performed with a slight
difference. This time define Q@ = v M? —w? € (0, M). Then the integral IJ(\}I?N becomes

2M

: d> ¢ :
1O i) — / iqr
M,N(rv@ ) R (2m)2 —Q2 — q2N€

¢*M+ 1 sin(qru)

1
_ﬁ/ \/u27—/ 02 + 2N dg (A.16)

2N-1
B 1 d sin(gru)
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The same steps in (A.4) are also performed here and the result looks the same. The
difference is in the distribution of poles. Now ¢, = Q/N¢i*35 ™ There are no more poles

on the real axis. This is shown in Fig 14.

Im(q) Im(q)
q1 do

q2 o

X X
. . Re(q) . . Re(q)

43, y

ds

44 —qo
(a) N = 3 for gapped graphene (b) N =1 for gapped graphene

Figure 14: A sketch for ¢, = QUN %™ in (A.16). Again, the contour giving non-zero
contribution closes according to the position of the pole. There are no more poles on the
real axis. This is the cause of exponential decay for charged density oscillation in the
band gap.

For one pole labelled from 0 to 2V — 1 in the summation, the integral can be written

: 1 oo wqru __ ,—iqru
/ g Smary) _ 1 / Qi e (A.17)
R

q9—an  21J) & 4= n
Notice that ru > 0, the integration contour will close on the upper complex plane for the
first term and on lower complex plane for the second term. Depending on the position of
pole considered, only one term will contribute to this integral. Integrate it out for each

as

term in the summation,

- 2n+1

|t gy A exp [isgn(lm(g,)] - ruq el
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M (T w =€) m? ), V-1 e T AN GEN—M-D
(A.18)
In the case of monolayer graphene considered here, N = 1, thus
= g [ g ot v ()]
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Ky(z) is the zeroth order modified Bessel function of the second kind. Making use of the
derivative recursion relation,

@ (0 oy - igong o (LAY )
Il,o,1<7°ﬂQ) e~ (—i)r (rdr> Io,1<7"aZQ>
_ b i . A.20
5-¢ Qd(QT)KO(QT) ( )
Q) .
= %ezgerKl(QT)

Finally, the Green function for gapped graphene is obtained as

0 e R (W MYKo(r) —ifQe 0 K (Qr)
GO =3 5 (—ime—iﬁ@rm(m) —(w—M)KO(Qr))' (A.21)

Restoring v will give (3.7) in the main text.
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