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Abstract

The nearest neighbor hopping tight binding model on the honeycomb lattice of

graphene gives rise to the relativistic desciption of electrons with a zero effective

mass and linear dispersion relation, in low energy regime. If inversion symmetry is

broken, the energy bands can open a gap. This work mainly studies the emergence

of a single isolated state in this gap called bound state, which is induced by a local

atomic impurity. Both analytic and numerical approach are adopted to compute

the local density of state (LDOS) of gapless and gapped graphene, which is a

direct expenrimental observable. Specifically, the far field behavior of LDOS is

predicted by the Green function method in the continuum limit. It demonstrates an

exponential decay inside the gap and Friedel oscillation pattern in the band, as well

as the additional wavefront dislocations induced by the impurity. The emergence of

bound state, the near impurity behavior of LDOS are shown by the tight binding

numerical calculation. The wavefront dislocation for gapless graphene and spatial

decaying behavoir for gapped graphene are recovered. A sharp peak right at the

bound state energy does appear for DOS near the impurity at several fixed sites as

a function of energy. A connection and agreement between the continuum analytic

and discrete numeric approach is also built by computing the bound state position

dependence on the impurity strength.
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1 Introduction

A new era was opened for condensed matter physics since 1980s, with the introduction

of the concept of topology and topological order into the field. The discovery of quan-

tum Hall effect[1, 2] shaked the foundation of the two cornerstones of condensed matter

theory[3], the Landau Fermi liquid theory and Landau’s symmetry breaking formalism.

Topology has played a key role to explain the robustness of this new kind of order for

matter[4]. The geometrical phase induced by adiabatic evolution discovered by Berry[5]

can be used to establish connections between the wavefunction and topology.

As the experimental technique and theoretical development continue to advance,

the band structure topology of Dirac material has gained increasing attention over the

decades. For the most celebrated Dirac material, graphene, the linear dispersion relation

and pseudospin degrees of freeddom from two inequivalent sublattices has been revealed

by scanning tunnelling microscope (STM) experiment[6]. In addition to the adiabatic cy-

cle in the presence of magnetic field demonstrated by anomalous quantum Hall effect[7],

the wavefront dislocations in Friedel oscillation induced by an atomic impurity also serves

as a complementary approach to measure the quantized π-Berry phase from pseudospin

winding[8]. Moreover, for graphene with inversion symmetry breaking, the bands open

a gap and such atomic impurity can generate an isolated bound state in the band gap.

Probing the properties of this bound state will give further information about the elec-

tronic band structure, which is not only interesting in view of theoretical understanding

but is also the prerequisite for the potential application in technologies. This is what the

present work is devoted to.

This report is organized as follows. Section 1 uses second quantization language to

describe nearest neighbor tight binding model of graphene, with a focus on low energy

regime. It also presents the Green function method used to calculate the local density

of state (LDOS), an experimental observable. In section 3, the results of analytic cal-

culations in the continuum limit is presented, demonstrating the Friedel oscillations and

exponential decay for gapless and gapped graphene in the band gap respectively. Section

4 presents the results from tight binding numerical computations, including a reconstruc-

tion of wavefront dislocations for gapless graphene, the emergence of bound state for

gapped graphene and its LDOS. Finally, section 5 summarizes the results and points out

future work that can be done.

2 Theoretical preliminary

2.1 Tight binding on a honeycomb lattice

The honeycomb lattice has a primitive cell containing two carbon atoms, which under

translation of basis vectors a1, a2 can pave the whole 2D plane. These two atoms,

labelled by A and B, form two inequivalent sublattices on the plane under translation.

The electrons on each A site can hop to 3 nearest B site, and vice versa for electrons
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on each B site. A schematic sketch is shown in Fig 1. Therefore, the tight binding

Hamiltonian in position space can be written as

H = t
∑
rA

3∑
α=1

c†B(rA + δα)cA(rA) + h.c.. (2.1)
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Figure 1: A schematic sketch of the graphene lattices. (a) shows the real lattice with a size

N = 3 on both directions of basis vectors a1 and a2. In numerical simulation the size N is

much larger than 3 and periodic boundary condition is applied. This means the diamond

shaped by the dashed line forms a torus. The lattice constant is roughly a0 ≈ 1.42Å.

Electron at each A site can hop to three nearest B site separated by δi, i = 1, 2, 3 and

vice versa. Throughout the work an atomic impurity is introduced at one A site chosen as

the origin. (b) shows the reciprocal lattice, with b1 and b2 as the reciprocal basis vectors.

Three choices of first Brillouin zone (BZ) are shown by hexagon, blue diamond and black

diamond. The solid line Wigner-Seitz cell is conventional and its vertices are the valleys.

In numerical calculations, the data are sampled in the blue diamond corresponding to

the torus in (a). Sometimes the black dashed diamond is more convenient for calculation.

The 3 choices are all equivalent up to a shift ot b1 and b2 of some parts of them.

For a graphene monolayer, the lattice constant and the hopping amplitude are roughly

a0 ≈ 1.42Å and t ≈ −3 eV. Under a lattice Fourier transformation ca(ri) =
1√
N

∑
k e

ik·rica(k),

where a labels the sublattice A or B, (2.1) can be written as

H/t =
∑
k

∑
a,b

c†a(k) [H(k)]ab cb(k), (2.2)

where the Hamiltonian matrix for one momentum value takes the 2 × 2 form, with the

dimension 2 arising from sublattice d.o.f,

H(k) =

(
0

∑3
α=1 e

ik·δα∑3
α=1 e

−ik·δα 0

)
= d1(k)σ1 + d2(k)σ2. (2.3)
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σ1, σ2 are the Pauli matrices. The Hamiltonian for a massive gapped graphene simply

writes H(k) = d1(k)σ1 + d2(k)σ2 +Mσ3. Physically it means the A and B sublattice are

no longer the same type and inversion symmetry is broken. In real space, this mass term

corresponds to an on-site energy M on the A site and −M on the B site.

For gapless graphene it can be easily verified form (2.3) that at the momentum value

k = Kξ
mn = ξ

b1 − b2
3

+mb1 + nb2, ξ = ±1, m, n ∈ Z, (2.4)

the energy of the system E(k) = ±
√

d1(k)2 + d2(k)2 vanishes. These points are called the

Dirac points and ξ = ±1 signifies two inequivalent valleys. Adiabatic transport around

these valleys brings a π Berry phase, which is a smoking gun signature of band topology

that has been verified[7, 8]. If in the momentum space, one focuses in the vicinity of the

Dirac points and Taylor expand H(Kξ
mn + q) in (2.3) up to linear order of q

H(Kξ
mn + q) =

(
0 ξqvF e

iξθq

ξqvF e
−iξθq 0

)
, (2.5)

with the Fermi velocity defined as vF = 3
2
a0t, and the linear dispersion relation E±(K

ξ
mn+

q) = ±vF q. As is shown in Fig 1b, the first BZ only contains 1 pair of valleys. In the

subsequent discussion it suffices to consider the pair enclosed by the black dashed line

BZ, with m,n indices in (2.4) as 0, 0. The m,n = (0, 0) indices for the valleys are omitted

from now on.

2.2 Green function and T -matrix formalism

The T -matrix formalism is widely used to calculate the analytic expression of LDOS

in the presence of impurity[9, 10, 11]. For a system governed by Hamiltonian H0, the

starting point is the retarded Green function in energy domain Ĝ(0)(ω) = 1/(ω+i0+−H0),

which comes from the forward propagation amplitude in time domain. The infinitesimal

imaginary part added to energy ω comes from causality and emphasizes the forward

propagation. It turns out that the imaginary part of diagonal element of Ĝ(0)(ω) in a

certain resprentation {|α1⟩ , |α2⟩ , . . . } actually signifies the intrinsic probability amplitude

for the system to be in state |αi⟩ and energy range (ω, ω + dω), apart from a factor of π−1.

In particular, if the chosen representation is position representation, the corresponding

quantity is defined as the LDOS

ρ(r;ω) = − 1

π
Im
[
G(0)(r, r;ω)

]
. (2.6)

For a perturbed system with HamiltonianH = H0+V , the Green function is expressed

in the form of Dyson equation G(ω) = G(0)(ω) + G(0)(ω)V G(ω) (for simplicity, the hat

for abstract Green function before choosing any representation is omitted from now on).

The intricacy of the Dyson series can be encoded in the so-called T -matrix denoted as

T (ω)

G(ω) = G(0)(ω) +G(0)(ω)T (ω)G(0)(ω), T (ω) = V + V G(0)(ω)T (ω), (2.7)
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where the solution to the T -matrixis simply writes T (ω) = V
[
1−G(0)(ω)V

]−1
. And in

this case, one is usually interested in calculating the LDOS modulation defined as

δρ(r;ω) = − 1

π
Im
[
⟨r|G(0)(ω)T (ω)G(0)(ω) |r⟩

]
. (2.8)

In the case of point impurity to be analyzed below, V is modeled by delta function, either

Dirac delta in continuum case or Kronecker delta in discrete case.

3 Analytic calculations in the continuum limit

For a point impurity located on the A site chosen as coordinate origin, the matrix

element of potential V is ⟨a, r1|V |b, r2⟩ = V0δr1,r2δr1,0δabδaA. The indices a, b stand for

sublattice degrees of freedom. In the monolayer graphene, the system possesses transla-

tional invariance. Eventually the LDOS modulation can be written as

δρ(r, ω) = − 1

π

B∑
a=A

Im
[
⟨a, r|G(0)(ω)T (ω)G(0)(ω) |a, r⟩

]
=

B∑
a=A

− 1

π
Im

[
G

(0)
aA(r,0;ω)V

′
0G

(0)
Aa(−r,0;ω)

1−G
(0)
AA(0,0;ω)V

′
0

]
.

(3.1)

V ′
0 is the impurity strength in the continuum limit and has the unit [energy] · [length]2.

Because of translational invariance, the Green function matrix is diagonal in momentum

representation (although not diagonal in sublattice degrees of freedom). Hence, in the

continuum limit, the real space Green function can be obtained by the Fourier transform

integral. First analyze gapless graphene without the mass term,

G(0)(r,0;ω) =

∫
k

dk2

(2π)2
eik·r [ω −H0(k)]

−1

=
∑
ξ

eiK
ξ·r
∫
R2

dq2

(2π)2
eiq·r

ω2 − (vF q)2

(
ω ξqvF e

iξθq

ξqvF e
−iξθq ω

)
.

(3.2)

The form in (2.5) is used. And the approximation of integrating over the whole 2D plane

is assured by the suppresing factor 1/(ω2− v2F q
2). Technically, the integral is contributed

by the two poles on the real axis. This will change for the massive gapped graphene. The

technical details are relagated to Appendix A. The result of the integral gives the Green

function as

G(0)(r,0;ω) = − ω

(2vF )2

∑
ξ

eiK
ξ·r

 iH
(1)
0

(
ωr
vF

)
ξeiξθrH

(1)
1 (ωr

vF
)

ξe−iξθrH
(1)
1 (ωr

vF
) iH

(1)
0

(
ωr
vF

)  , (3.3)

where H
(1)
0 (x), H

(1)
1 (x) are zero and first order Hankel function of the first kind. The

LDOS modulation, considering all the possible scattering among the valleys, is thus
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obtained from (3.1) as[8]

δρ(r;ω) =
∑
ξ,ξ′

C Im

[
ω2t(ω)

(
H

(1)
0 (ωr/vF )

)2]
cos(∆K · r)

− C Im

[
ω2t(ω)

(
H

(1)
1 (ωr/vF )

)2]
ξξ′ cos(∆K · r −∆ξθr),

(3.4)

where C is a constant independent of energy and position. t(ω) = V ′
0/(1−G

(0)
AA(0,0;ω)V

′
0).

∆K = K ′ −K . The oscillation pattern appearing here is dubbed Friedel oscillation.

(a) Radial dependence (b) δρA(r, Vb = 0.4 eV)

(c) δρB(r, Vb = 0.4 eV) (d) δρ(r, Vb = 0.4 eV)

Figure 2: LDOS in Eq.(3.4) for one pair of inter-valley scattering. The impurity strength

chosen to generate the data is V0 = 1545t. (a) shows the radial dependence of the

prefactors before the cosines, achieved by integrating the expressions over ω up to the

bias voltage of the STM tip Vb = 0.4 eV. This choice of bias voltage corresponds to [8].

It’s rescaled with respect to δρ(r = 0.14 nm). (b) shows δρA(r, Vb = 0.4 eV). The data in

(b) is multiplied by r2 to enhance visibility. There is no wavefront dislocation. (c) shows

δρB(r, Vb = 0.4 eV). There are exactly 2 wavefront dislocations sourced by the vortex

field in the phase. (d) displays the total LDOS from the two sublattices. The wavefront

dislocations are less obvious but still tractable if examined very carefully.
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At large distance it displays a dominant 1/r decay for monolayer graphene, due to the

asymptotic behavior of the Hankel functions at r → ∞[
H

(1)
0

(
ωr

vF

)]2
≃ e

2irω
vF

− iπ
2

(
2vF
πrω

− iv2F
2πr2ω2

− 5v3F
16πr3ω3

+O

(
1

r4

))
(3.5)

[
H

(1)
1

(
ωr

vF

)]2
≃ e

2irω
vF

− 3iπ
2

(
2vF
πrω

+
3iv2F

2πr2ω2
+

3v3F
16πr3ω3

+O

(
1

r4

))
. (3.6)

Treat δρ(r;ω) as a wave field, the phase of the second term in (3.4) admits a contribu-

tion from a vortex field for inter-valley scattering ∆ξ = 2, which sources the wavefront

dislocations[12]. These wavefront dislocation are also experimentally verified[8]. A plot

of this pattern for one pair of inter-valley scattering event from the analytical expression

(3.4) is shown in Fig 2.

For the massive gapped graphene, the Hamiltonian H(k) differs from (2.3) from

M, −M on the diagonal. The dispersion relation becomes E(k) = ±
√
d1(k)2 + d2(k)2 +M2.

Repeat the same procedure as above to compute the Green function in real spaceG(0)(r,0;ω)

and the LDOS modulation. In the energy range |ω| > M , the Friedel oscillation pattern

doesn’t change essentially. What’s interesting is to look in the band gap −M < ω < M ,

where the integral in (3.2) only has contribution coming from the poles on the imaginary

axis. Again, technical details can be found in Appendix A. The result is

G(0)(r,0;ω) =
∑
ξ

eiK
ξ·r

2πv2F

(
−(ω +M)K0(

Ωr
vF
) −iξΩeiξθrK1(

Ωr
vF
)

−iξΩe−iξθrK1(
Ωr
vF
) −(ω −M)K0(

Ωr
vF
)

)
, (3.7)

where Ω =
√
M2 − ω2 ∈ (0,M). K0(x) and K1(x) are the zero and first order modi-

fied Bessel function of the second kind. It’s purely real for real argument and admits

asymptotic behavior at r → ∞

K0

(
Ωr

vF

)
≃ e

− rΩ
vF

(√
π
2

√
vF
Ω√

r
−
√

π
2

(
vF
Ω

)
3/2

8r3/2
+

9
√

π
2

(
vF
Ω

)
5/2

128r5/2
+O

(
1/r

7
2

))
(3.8)

K1

(
Ωr

vF

)
≃ e

− rΩ
vF

(√
π
2

√
vF
Ω√

r
+

3
√

π
2

(
vF
Ω

)
3/2

8r3/2
−

15
√

π
2

(
vF
Ω

)
5/2

128r5/2
+O

(
1/r

7
2

))
. (3.9)

Around the middle of the gap ω ≈ 0, the characteristic declay length is vF/2Ω ∼
(3/4)a0t/M .

When applying (3.7) to (3.1), one has to substitute ω with ω + iη and first treat the

Green function as if it’s complex, then taking limit η → 0+ gives LDOS modulation

δρ(r, ω) =
B∑

a=A

1

π

V ′
0Re

[
G

(0)
aA(r,0;ω)G

(0)
Aa(−r,0;ω)

]
Im
[
−V ′

0G
(0)
AA(r,0;ω)

]
[
1− V ′

0Re
(
G

(0)
AA(0,0;ω)

)]2
+
[
Im
(
−V ′

0G
(0)
AA(r,0;ω)

)]2 . (3.10)

The whole expression gives 0 unless both numerator and denominator vanish, since in

the band gap the Green function is purely real. Making use of the property of of Dirac
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delta function limγ→0
1
π

γ
E(ω)2+γ2 = δ(E(ω)) = δ(ω−ωb)

|E′(ωb)|
in (3.10), where ωb is the solution

simultaneously satisfying

Im
[
−V ′

0G
(0)
AA(r,0;ω)

]
= 0, E(ω) ≡ 1− V ′

0Re
(
G

(0)
AA(0,0;ω)

)
= 0. (3.11)

Then the LDOS modulation gives

δρ(r, ω) =
B∑

a=A

Re
[
G

(0)
aA(r,0;ω)G

(0)
Aa(−r,0;ω)

] δ(ω − ωb)

|E ′(ωb)|
. (3.12)

A single isolated state with energy ωb appears in the gap due to the presence of the

impurity. This is the so-called bound state. The spatial pattern of the local density of

state for such a bound state is highly localized around the impurity, as is evidenced by

the asymptotic behavior of exponential decay at large distance.

The continuum analytic calculation predicts the existence of bound state. However,

it fails to predict the position of the bound state in the gap. When one tries to solve the

second equation in (3.11),

1− V ′
0Re

[
G

(0)
11 (0,0;ω)

]
= 1 +

V ′
0Nv(ω +m)

2πv2F
K0(0) = 0. (3.13)

Nv is the number of valleys involved. K0(x) diverges at x = 0 and renders the theory

pathological. In fact, the continuum calculation cannot be trusted anymore when it gets

too close to the origin, i.e., to the impurity, since there are still a finite distance from

the impurity to its neighbor carbon atom at the order of a0 ∼ 1.42Å. Heuristically, a

cut-off at the lattice scale approximately at r ≈ a0 can be introduced to (3.13), taking

into account the definition of Fermi velocity vF = 3
2
a0t and the number of valleys Nv = 2,

V ′
0/(βa

2
0)

t

(
ωb

t
+

M

t

)
K0

2

3

√(
M

t

)2

−
(ωb

t

)2 = −9π

4
. (3.14)

V0 = V ′
0/(βa

2
0) is the impurity strength in discrete lattice and is referred to as impurity

strength from now on. The argument of K0(Ωr/vF ) is chosen exactly at r = a0. The

determination of numerical factor β will be illuminated in comparison with the data

coming tight binding numerical computation.

4 Tight binding numerics

In this task, the periodic boundary condition is adopted on both a1 and a2 direction.

The number of unit cells N chosen on both direction is the same N = 102, such that the

sampling of lattice points in momentum space will go through the Dirac points. When

the Hamiltonian is diagonalized as H =
∑

α ϵαd
†
αdα, the eigenvectors Ujα appearing in

the expression of these quasi-particle creation and annihilation operators

d†α =
∑
j

⟨j|α⟩ c†j =
∑
j

Ujαc
†
j dα =

∑
i

⟨α|i⟩ ci =
∑
i

U∗
iαci (4.1)
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(a) Gapless bands (b) Gapped bands

Figure 3: The energy bands for massless and massive electrons. The numerous black dots

are the numerical solutions ϵα to the Hamiltonian in real space. They lie almost exactly

on the bands plotted according to analytic solution. The bands are plotted as a function

of the indices m,n for wavevector k = m
N
b1 +

n
N
b2.

are nothing but the position space wavefunctions for various energy eigenstates with

eigenenergy ϵα. The Hamiltonian matrix is real and symmetric, so the software will au-

tomatically return real eigenvectors. This corresponds to a superposition of the plane

wave eigenstate eik·r and e−ik·r with the same eigenenergy ϵα such that the resulting

wavefunctions are purely real in this energy subspace. The upshot is that the probabil-

ity density |Ujα|2 and the LDOS for electrons in pristine graphene both exhibit a wavy

behavior as a signature of standing wave, be it in the massless or massive regime. This

is purely an artificial effect from numerical computation. According to Heisenberg un-

certainty principle, the electron completely localized in momentum space, such as in this

case, will be completely delocalized in the position space. The translational invariance

suggests that no lattice site should be preferable than the others in the absence of im-

purity. So the strategy for computing the LDOS in numerical method is modified. One

only computes the LDOS of the contaminated graphene, without subtracting the LDOS

of pristine graphene which involves the artifact of standing wave behavior.

The numerical calculation of energy spectrums for massless and massive pristine

graphene agree fairely well with the analytical result, as is shown in Fig 3. This serves

as a validity check of the code to simulate the Hamiltonian.

4.1 Gapless graphene with impurity

The impurity is located only on one A site chosen as the origin and its strength

is chosen as V0/t = 1545. The simulated LDOS data ρ(r;ω) contains the pattern of

oscillation coming from scattering among the valleys. The Fourier transform of the data

ρ(r;ω) is obtained for both A and B sublattice, for the energy value ω = 0.13t, which

correspond to the choice in Fig 2 of Dutreix et, al[8]. The Fourier transformed LDOS

in momentum space is plotted in Fig 4. One can see the dominant signals coming from

inter and intra-valley scattering as they peak. Using Gaussian wavepacket to filter out

only the inter-valley scattering, the reconstructed LDOS in real space by inverse Fourier

transform are plotted in Fig 5. The two wavefront dislocations appear in the total charge

oscillation.
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(a) Re(ρA(k)) (b) Re(ρB(k)) (c) Re(ρ(k))

Figure 4: LDOS for contaminated gapless graphene in momentum space, plotted as

the black dashed line shaped diamond BZ in Fig 1b. By a suitable translation of b1
and b2 the diamond shaped first Brillouin zone can be made into traditional hexagon

shape. The impurity strength is V0 = 1545t. It’s plotted for energy ω ≈ 0.13t. The

peak in the center corresponds to intra-valley scattering. The peaks on the two valleys

Kξ = ξ(b1 − b2)/3, (ξ = ±1) correspond to inter-valley scattering. This pattern agrees

with the results found in [10]. The filtering in momentum space is done by Gaussian

wavepackets around the two peaks opposite to each other with respect to the origin, with

a standard deviation σ = b/8
√
3, where b = |b1| = |b2|.

(a) ρA(r) (b) ρB(r) (c) ρ(r)

Figure 5: The filtered real space LDOS obtained from inverse Fourier transform for con-

taminated gapless graphene. The plots shown here are the norm of the data ρfl(r;ω), with

a small imaginary part arising from the finite width of Gaussian filtering wavepackets. In

these plots, it’s on average 3 to 4 orders of magnitude smaller than the real part, for the

standard deviation chosen as σ = b/8
√
3. It can be made even smaller by decreasing this

width σ. The data is multiplied by 104 for the convenience of colorbar display. Several

wavefronts are labelled by white dashed line. The two dislocations appear in ρB(r) and

the total ρ(r) but is less obvious in the latter.
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(a) Bound state position for M = 0.2t and var-

ious V0 (b) Eigenenergies for V0 = −5t, M = 0.2t

Figure 6: Bound state position for various impurity strength and eigenenergy distribution

for V0 = −5t, M = −2t. In (a), the dashed lines are plotted according to Eq.(3.14). The

area of the primitive cell for graphene honeycomb lattice is exactly βa20 = (3
√
3/2)a20.

This choice of β corresponds to the blue dashed line in (a) and is in agreement with

the numerical data. A zoomed in view exhibits a threshold of impurity strength for the

appearance of bound state. In (b), the eigenenergy ϵα ≈ V0 is excluded from the plot.

The three colored points are selected to plot the spatial pattern of LDOS ρ(r;ω). The

bound state is labelled by red. Its location near the center of the gap makes its property

most pronounced, which will be shown by the sharp peaks in Fig 7 and Fig 8. As is

shown in (a), a larger impurity strength brings the bound state closer to the lower band

edge. The signal of bound state in DOS will also be less significant.

4.2 Gapped graphene with impurity

The analytic analysis predicts the existence of bound state in the band gap, but

fails to predict its position, due to its failure near the impurity point. From numerical

simulation with the choice of mass M = 0.2t, the bound state position in the gap for

various impurity strength is calculated and plotted in Fig 6a. Remarkably, it’s almost

exactly predicted by the heuristic cut-off in analytic expression at r = a0, provided

that the area factor β in (3.14) is accounted for by the unit cell area. This builds a

strong connection between analytic and numerical treatment. The eigenenergies solved

for Hamiltonian with parameters V0 = −5t, M = 0.2t is plotted in Fig 6b. This choice

of parameter is to make the bound state appear near the gap center so that the bound

state signature is most pronounced.

The density of state at a few sites around the impurity ρA(ω) and ρB(ω) as a function

of energy ω are displayed in Fig 7 and Fig 8.The sharp peak at the bound state is a

signature of Dirac delta function in the analytic results. In addition, the spatial pattern
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of real space LDOS for the three energies selected in Fig 6b is plotted in Fig 9 and Fig

10. The same Fourier analysis and filtering is done for LDOS at the bound state energy

ρ(r;ωb). This is shown in Fig 11 and Fig 12. The rapid decaying behavior over a few sites

are again recovered. But no exponentially suppressed wavefront dislocation is displayed.

It should result from the absence of inter-valley scattering for B sublattice in Fourier

space shown in Fig 11b. This seems to be at odds with the analytic result (3.12). It

suggests a limitation of the numerical calculations performed here, probably due to an

improper choice of parameters or a limited lattice size.

(a) ρA(00;ω) (b) ρA(10;ω)

(c) ρA(10;ω) (d) ρA(11;ω)

Figure 7: ρA(ω) for sites (00), (10), (01), (11) respectively. A very sharp peak arises

right at the position of bound state labelled by red in Fig 6b, in the otherwise flat band

gap. The sharp peak is a signature of the Dirac delta function in (3.12). This is another

aspect of the agreement between analytic and numerical approach.
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(a) ρB(00;ω) (b) ρB(10;ω)

(c) ρB(10;ω) (d) ρB(11;ω)

Figure 8: ρB(ω) for sites (00), (10), (01), (11) respectively. Again there’s a sharp peak

at the bound state, as a signature of Dirac delta function in analytic result (3.12). The

energy dependence for B sublattice behaves the same for the sites near the A impurity.

This again shows different response of LDOS to the impurity for A and B sublattice.
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(a) ρA(r;ω) for ω at bound state, band edge and band bulk

(b) Middle and right panel zoomed in

Figure 9: ρA(r;ω) for sublattice A at the three energy values. The origin is shifted to

the center, compared to Fig 1a, due to periodicity. Only the bound state energy plot is

not zoomed in. It decays to zero after just a few sites from the impurity. Such a rapid

decaying behavior qualitatively agrees with the results in analytic method. The spatial

pattern obeys symmetry of reflection about the direction a1+a2 and a1−a2, as it should

be since the local impurity is located only on one A site located at the origin.
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(a) ρB(r;ω) for ω at bound state, band edge and band bulk

(b) Middle and right panel zoomed in

Figure 10: ρB(r;ω) for sublattice B at the three energy values. Again only the bound state

energy is not zoomed in. The pattern for ωb and ωe are almost the same for B sublattice,

except for the numerics. The B lattice LDOS responses to the impurity differently from

that of A sublattice. It’s only symmetric by reflection about the direction a1+a2, which

makes sense since the impurity lies right above the B atom at the m,n = (00) site.
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(a) Re(ρA(k)) (b) Re(ρB(k)) (c) Re(ρ(k))

Figure 11: The real part of Fourier tranform of the LDOS for bound state shown

in left panels of Fig 9 and Fig 10. For A sublattice both intra and inter-valley

scattering are present. But for B sublattice there is only intra-valley scatter-

ing. Superimposing the two gives only dominant signal for intra-valley scattering.

Again, Gaussian wavepackets around the two valleys are used to filtered the signals

around them. The width is chosen as σ = b/16
√
3. This leads to the results shown

in Fig 12.

(a) ρA(r;ωb) (b) ρB(r;ωb) (c) ρ(r;ωb)

(d) lg ρA(r;ωb) (e) lg ρB(r;ωb) (f) lg ρ(r;ωb)
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Figure 12: The filtered bound state LDOS. The bottom three panels show the data in log

scale. Most of the behavior of the left panels of Fig 9 and Fig 10 are recovered, including

the rapid decay around the impurity, the reflection symmetry about certain axes for the

two sublattices. The data ρ(r;ω) shown here are multiplied by a factor of 104 for the

convenience of colorbar display. The absence of wavefront dislocation might be due to

the absence of inter-valley scattering in Fig 11b.

5 Conclusion

In summary, the analytic and numerical method are both applied to study the gapless

and gapped monolayer graphene, in particular the isolated bound state in the middle of

the gap induced by an atomic impurity. Some agreements between these two approaches

are established, demonstrating the efficiency of this dichotomy.

The main result is the calculation of LDOS, an experimental observable probed by

STM. In analytic analysis, for gapless graphene the LDOS is shown to display Friedel

oscillations and wavefront dislocations induced by the vortex field in the presence of

impurity. The LDOS for the case of massive electrons on graphene exhibits an exponential

decay inside the band gap, with a characteristic decay length ldecay ∼ a0t/M . The analytic

result in the continuum limit predicts the existence of the bound state inside the gap but

fails to predict its position, because the real system is after all in the form of a discrete

lattice. In tight binding numerical calculations, the spectra of the Hamiltonian for the

two types of graphene are computed. In particular, the position of the bound state in

the gap is calculated for a set of impurity strength, which considerably agrees with the

cut-off in the analytic expression taking into account of the area factor of a unit cell in

graphene honeycomb lattice. The eigenenergies and wavefunctions serve as the input to

calculate the LDOS which mimic experimental data. This allows to build several other

connections between analytics and numerics. For instance, for gapless graphene, the

wavefront dislocations are vaguely reconstructed from Gaussian filtering of LDOS data

in Fourier space. For gapped graphene, the rapid exponential decaying behavior of LDOS

for bound state is recovered. The DOS as a funtion of energy ω exhibits a sharp peak

right at the value of bound state energy, which is a signature of Dirac delta function in

the analytical expression. Finally, the same Gaussian filtering technique is attempted to

recover the exponentially suppressed wavefront dislocations for bound state. But within

the numerical limitations of the tight binding computations performed here, we were

unable to extract the signal of analytically predicted spatial modulations.

Improvement and generalization can be done. One can try to improve the resolu-

tion of wavefront in the filtered LDOS data, by trying to increase the size of lattice if

computational power allows. The reason for the absence of inter-valley scattering and

the wavefront dislocation for the bound state is yet to be examined. Once the work on

graphene is completed, one can start to consider a magnetic point impurity on other

types of 2D material, such as transition metal dichalcogenides (TMD), where electrons

with different spins react differently to the impurity. How will the bound state be gen-
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erated in such scenario? And what will be its difference from the case of non-magnetic

impurity considered in this work? These questions can be explored in the future by both

theoretical and experimental work.

A Calculation details for analytic Green function

This appendix presents some details about using some complex analysis to compute

the analytic expression of real space Green functions. It’s adapted from appendix B,C

of [9]. For simplicity, the Fermi velocity is set to vF = 1 during the calculations and

restored in the final results.

Two integrals will be frequently used in the subsequent calculation.

I
(1)
M,N(r, ω) =

∫
R2

dq2

(2π)2
q2M

ω2 − q2N
eiq·r, (A.1)

I
(2)
L,M,N(r, ω) = −

∫
R2

dq2

(2π)2
q2M

ω2 − q2N
(
qeiξθq

)L
eiq·r. (A.2)

For I
(1)
M,N(r, ω), making use of the integral definition of the integer order Bessel function

Jn(x) and the result ∫ ∞

1

du

π

sin(qru)√
u2 − 1

=
1

2
J0(qr), (A.3)

I
(1)
M,N(r, ω) can be written as

I
(1)
M,N(r, ω) =

∫ ∞

0

dq

2π

q2M+1

ω2 − q2N
J0(qr)

=

∫ ∞

0

dq

π

q2M+1

ω2 − q2N

∫ ∞

1

du

π

sin(qru)√
u2 − 1

=
1

2π2

∫ +∞

1

du√
u2 − 1

∫ +∞

−∞
dq

q2M+1 sin(qru)

ω2 − q2N

=
1

2π2

∫ +∞

1

du√
u2 − 1

2N−1∑
n=0

1

2Nq
2(N−M−1)
n

∫
R
dq

sin(qru)

qn − q
.

(A.4)

qn = ω1/Nei
n
N
π is the nth (n from 0 to 2N−1) simple pole of the integrand over q, among

the 2N simle poles. q0 and qN are the poles lying on the real axis. The distribution of

poles is shown in Fig 13. For the monolayer graphene considered in this work, N = 1

suffices. The case of a generic positive integer N can be used to study the Green function

of N -layer graphene[9].

For I
(2)
L,M,N(r, ω), a recursion relation with I

(1)
M,N(r, ω) can be built.

I
(2)
L,M,N(r, ω) = −

∫
R2

dq2

(2π)2
q2M

ω2 − q2N
(
qeiξθq

)L
eiq·r

= −
∫ ∞

0

dq

2π

q2M+1

ω2 − q2N
qLeiξLθr

2π

∫ 2π

0

dθqe
iξL(θq−θr)eiqr cos(θq−θr)

= −ξL
∫ ∞

0

dq

2π

q2M+1

ω2 − q2N
eiξL(θr+

π
2
)qLJL(qr),

(A.5)
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q0

q1
q2

q3

q4 = −q0

q5 q6
q7

Re(q)

Im(q)

(a) qn distribution for N = 4

q0−q0

Re(q)

Im(q)

(b) N = 1 for gapless graphene

Figure 13: Simple pole distribution for qn in (A.4). In the last line of (A.4), the sin

function can be written as 1
2i
(eiqru + e−iqru). The integration contour closes either on

upper plane or lower plane depending on the position of the pole qn considered. For

example, in (a) the contour is for the term involving q2. However at large distance only

the two poles on the real axis contribute. And these are the only poles for the case of

monolayer graphene N = 1 considered in this work, as is shown in (b). The principle

values for these two terms are realized by the infinitesimal semi-circle contour and residue

theorem.

where in the last line the integral definition of integer value Bessel function is used again.

Notice the recursion relation of the Bessel functions

JL(qr) = (−1)L(qr)L
(

1

qr

d

d(qr)

)L

J0(qr). (A.6)

I
(2)
L,M,N(r, ω) can be further written as

I
(2)
L,M,N(r, ω) = −ξLeiLξ(θr+

π
2
)(−1)LrL

(
1

r

d

dr

)L ∫ ∞

0

dq

2π

q2M+1

ω2 − q2N
J0(qr)

= −ξLeiLξ(θr+
π
2
)(−1)LrL

(
1

r

d

dr

)L

I
(1)
M,N(r, ω).

(A.7)

From (3.2), setting vF = 1, the Green function for gapless graphene becomes

G(0)(r,0;ω) =
∑
ξ

eiK
ξ·r

(
ωI

(1)
0,1 (r, ω) ξI

(2)
1,0,1(r, ω)

ξI
(2)′
1,0,1(r, ω) ωI

(1)
0,1 (r, ω)

)
, (A.8)

where I
(2)′
1,0,1(r, ω) is just I

(2)
1,0,1(r, ω) with θr substituted by −θr. Thanks to the recursion

relation (A.7), once I0,1(r, ω) is calculated, it’s done. From the last line of (A.4),

I
(1)
0,1 (r, ω) =

1

2π2

∫ ∞

1

du√
u2 − 1

× 1

2

(∫ ∞

−∞

sin(qru)

ω + i0+ − q
dq +

∫ ∞

−∞

sin(qru)

−(ω + i0+)− q
dq

)
.

(A.9)

From the famous result[13]

lim
η→0+

∫ ∞

−∞

f(x)

x− x0 ± iη
= p.v.

∫ ∞

−∞

f(x)

x− x0

dx∓
∫ +∞

−∞
iπδ(x− x0)f(x)dx, (A.10)
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the first integral in the bracket in (A.9) can be evaluated as

−
∫ ∞

−∞

sin(qru)

q − ω − i0+
dq = −

(
p.v.

∫ +∞

−∞
dq

sin(qru)

q − ω
+ iπ

∫ ∞

−∞
dqδ(q − ω) sin(qru)

)
= −

(
Im

∫ ∞

−∞

eiqr

q − ω
dq + iπ sin(ωru)

)
= − (π cos(ωru) + iπ sin(ωru)) .

(A.11)

In the last line, the residue theorem is used to compute the principle value. For the second

integral in bracket in (A.9), the same result is obtained following the same procedure.

Thus I
(1)
0,1 (r, ω) is finally calculated as

I
(1)
0,1 (r, ω) = − 1

2π

∫ ∞

1

eiωru√
u2 − 1

du = − i

4
H

(1)
0 (ωr). (A.12)

From the recursion relation and (A.8), the real space, the real space Green function for

gapless graphpene is finally obtained as

G(0)(r,0;ω) =
∑
ξ

eiK
ξ·r

(
− iω

4
H

(1)
0 (ωr) −ω

4
ξeiξθrH1(ωr)

−ω
4
ξe−iξθrH1(ωr) − iω

4
H

(1)
0 (ωr)

)
. (A.13)

Restoring the vF will just give (3.3) in the main text.

For gapped graphene, the integral expression of the Green function, compared to (3.2),

becomes

G(0)(r,0;ω) =
∑
ξ

eiK
ξ·r
∫
R2

dq2

(2π)2
eiq·r

ω2 −M2 − q2

(
ω +M ξqeiξθq

ξqe−iξθq ω −M

)
. (A.14)

If |ω| > M , i.e., in the energy range outside the band gap, the procedure is the same as

above, with the role of ω replaced by Ω ≡
√
ω2 −M2. The Green function for gapped

graphene in this energy range is

G(0)(r,0;ω) =
∑
ξ

eiK
ξ·r

4v2F

(
−i(ω +M)H

(1)
0 (Ωr

vF
) ΩξeiξθrH

(1)
1 (Ωr

vF
)

Ωξe−iξθrH
(1)
1 (Ωr

vF
) −i(ω −M)H

(1)
0 (Ωr

vF
)

)
. (A.15)

The LDOS modulation calculated from (A.15) will still display the Friedel oscillation.

However, inside the gap ω ∈ (−M,M), the calculation is performed with a slight

difference. This time define Ω ≡
√
M2 − ω2 ∈ (0,M). Then the integral I

(1)
M,N becomes

I
(1)
M,N(r, iΩ) =

∫
R

dq2

(2π)2
q2M

−Ω2 − q2N
eiq·r

= − 1

2π2

∫ ∞

1

du√
u2 − 1

∫ ∞

−∞

q2M+1 sin(qru)

Ω2 + q2N
dq

= − 1

2π2

∫ ∞

1

du√
u2 − 1

2N−1∑
n=0

1

2Nq
2(N−M−1)
n

∫
R
dq

sin(qru)

q − qn
.

(A.16)
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The same steps in (A.4) are also performed here and the result looks the same. The

difference is in the distribution of poles. Now qn = Ω1/Nei
2n+1
2N

π. There are no more poles

on the real axis. This is shown in Fig 14.

q0

q1

q2

q3

q4

q5

Re(q)

Im(q)

(a) N = 3 for gapped graphene

q0

−q0

Re(q)

Im(q)

(b) N = 1 for gapped graphene

Figure 14: A sketch for qn = Ω1/Nei
2n+1
2N

π in (A.16). Again, the contour giving non-zero

contribution closes according to the position of the pole. There are no more poles on the

real axis. This is the cause of exponential decay for charged density oscillation in the

band gap.

For one pole labelled from 0 to 2N − 1 in the summation, the integral can be written

as ∫
R
dq

sin(qru)

q − qn
=

1

2i

∫ ∞

−∞
dq

eiqru − e−iqru

q − qn
. (A.17)

Notice that ru > 0, the integration contour will close on the upper complex plane for the

first term and on lower complex plane for the second term. Depending on the position of

pole considered, only one term will contribute to this integral. Integrate it out for each

term in the summation,

I
(1)
MN(r, ω = iΩ) = − 1

2π2

∫ +∞

1

du√
u2 − 1

2N−1∑
n=0

π
exp

[
i · sgn [Im(qn)] · ruΩ

1
N ei

2n+1
2N

π
]

2Nq
2(N−M−1)
n

.

(A.18)

In the case of monolayer graphene considered here, N = 1, thus

I
(1)
0,1 (r, iΩ) = − 1

2π2

∫ +∞

1

du√
u2 − 1

π

2

[
exp

(
iruΩei

π
2

)
+ exp

(
−iruΩei

3π
2

)]
= − 1

2π

∫ +∞

1

du√
u2 − 1

e−Ωru = − 1

2π
K0(Ωr)

. (A.19)
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K0(x) is the zeroth order modified Bessel function of the second kind. Making use of the

derivative recursion relation,

I
(2)
1,0,1(r, iΩ) = −eiξθr(−i)r

(
1

r

d

dr

)
I
(1)
0,1 (r, iΩ)

= − i

2π
eiξθrΩ

d

d(Ωr)
K0(Ωr)

=
iΩ

2π
eiξθrK1(Ωr)

. (A.20)

Finally, the Green function for gapped graphene is obtained as

G(0)(r, ω) =
∑
ξ

eiK
ξ·r

2π

(
−(ω +M)K0(Ωr) −iξΩeiξθrK1(Ωr)

−iξΩe−iξθrK1(Ωr) −(ω −M)K0(Ωr)

)
. (A.21)

Restoring vF will give (3.7) in the main text.
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