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1 Summary of results

Since later I want to discuss the bound (and most interestingly circular) orbit of two spinning rigid
spheres in Newtonian gravity, in this note some generalities of rigid body motion are established. Con-
trary to the traditional text which mainly use Euler angles to describe the rotational (spinning) degrees
of freedom such as [1, 2], this note introduces a Euclidean orthonormal triad, such that comparisons
and generalization to relativistic mechanics can be stated. Moreover, the distinction between the in-
ertial background frame and body-fixed frame is made clear by the novel mathematical description.
This was somewhat confusing or elusive to me when I first learned it as an undergraduate.

Notation: middle Lattin indice ¢, j, k... always refer to the components in the background frame,
and early Lattin indices with hat a, l;, ¢... always refer to components in the rotating body frame.
The early Lattin letters with no hat a,b,c--- = {1,2,3} refer to the labels of the background frame
basis vectors. Boldface letters refer to abstract tensors, whose type should be specified in the context,
such as basis vectors e,, a = {1,2,3} in the background frame which has components e’ = §%. If
the boldface letter is a form, a superscript is sometimes used to specify its rank, such as w®. The
comparison of classical and relativistic mechanics is summarised in the following table

classical mechanics relativistic mechanics
triad /tetrad el (1) el (r)
orthonormality 1 5ijegeg = 0,4, Guvelie, =nap
orthonormality 2 5agefe§’- = ;5 nABeﬁef = Guv
evolution el = Rij(t)eé(O), R';(t) € SO(3) | ey(r) = A*, ()€}, A¥, (7) € SO(1,3)
angular velocity 2-form e?édj = wjj eﬁéAV =Qu
linear momentum P, = % Py = 88 uL“
(spin) angular momentum 2-form Sij = 2% Sy = 2%
equations of motion P = % =F, St = g—é = Nt Pu = 3 RpovuSPou”, Sy = 2D[ U )

Table 1: The rightmost column contains the well-known results taken from either [3] (for special
relativistic case) or [4] (for general relativistic case). Instead of taking these results for granted, in
this note the formulae in the column of classical mechanics are either motivated from definition, or
derived from first principle. It should be pointed out that orthonormality 1 is given from definition,
but orthonomality 2, for the classical case, is derived from property of SO(3).

With this classical correspondence in mind, it’s less likely to get lost in the mathematics as we
proceed in the relativistic calculations. I was indeed a bit lost when trying to use the spinning particle
dynamics in curved spacetime to reduce the tensorial first law to scalar form. This note (and the few
next to come) is to provide a clearer physical picture by going back to the classical world which is
easier to imagine and visualize.



2 Kinematics

2.1 triad and angular velocity

The first task is to come up with mathematical description of the configuration of the system. There
are 6 degrees of freedom for a rigid body: 3 translational and 3 rotational. We can first build a fixed
background coordinate, and describe the configuration of the rigid body in terms of the coordinate of
a reference point, and the relative position of the points on the rigid body with respect to the reference
point. The former encodes the translational degrees of freedom, and the latter encodes the rotational
ones. The basis vectors of the background frame e,, a = {1,2,3} are time independent, while those
for the body frame es, @ = {1,2,3} are. Their relation is given by

e, = %(t)eq, or in components e = Rij (t)el. (1)

Here # € SO(3) with matrix components R’;. The usual convention R’;(0) = 6’; means that at t = 0,

the basis vectors for the two frames coincide. By definition §;;€? (t)eg(t) = ¢.;, meaning the triad stays

a ab’
orthonormal at all times, although they are in general constantly rotating. A computation of 5[117626%
shows

el + esel + esel

= (R el ) (R e]') + (R e ) (R, ef?) + (R e ) (R ef)

= (R, 01) (R, 61') + (R',02) (R 1,68) + (R';,65) (R}, 6) (2)
= R'\R), + R, R, + R R,

= (RRT)T = 51,

We now have the first three rows for Table 1. As is mentioned in the caption, the orthonormality 2 is
derived, not given.

Call the body reference point O, which does not necessarily have to be the center of mass (COM)
for the moment. A given point A on the rigid body is described by the position vector

Ry=R+7r4=R+ A%y, or in components, RYy = R’ + A% (3)
The configuration space is thus
C=A{R(t),Z(t)}, or C={R(t),ea(t)}. (4)

This means that at any instant ¢, the body is characterized by the position of the reference point, and
a rotation from the background axes to the body axes about that point. A fixed point A on the body
is enough to determine all the other points since the relative position between points of a rigid body
is fixed a priori. Hence the components A% is time independent. Figure 1 shows this physical setup at
an initial moment ¢ = 0 and an arbitrary instant. The velocity of point A at time ¢ is

Ry = R+ A%,. (5)

The first term, the translational velocity of the reference point, is trivial. The second term motivates
the definition of the angular velocity. To see this, consider an infinitesimal time internval from ¢t = 0,

ra;(dt) = AR (0 + dt)el = A* (65, + dtw'(Ls) ji) €k (6)
The second equality comes from the theory for SO(3) in fundamental representation®. It can be
regarded as a definition of the angular velocity, i.e., the vector which multiplied by dt gives the
infinitesimal amount of generation of rotation?. Adopting an active viewpoint of transformation, in

!Notice here we write €, instead of e% (0) just for convenience. Exceptionally a and & should be summed over here.

2Strictly speaking it is a pseudo-vector because of its behavior under spatial parity transformation. But we don’t
distinguish the difference here, nor for its dual pseudo-2-form, which is considered to be more fundamental by some
mathematical physicists.
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Figure 1: The illustration of coordinate choice and rigid body motion. At ¢ = 0, the basis vectors of
the background frame and body frame coincide.

fundamental representation the SO(3) generators (L;),x, meaning the jk matrix component of the ith
generator, takes the form

(Li)jr = —€ijr, satisfying [L;, Lj] = €;jx Ly (7)
Plug it back into (6), we have
raj(dt) = ra;(0) + dtejipw’e? AY = 1 4;(0) + dt(w x r4(0));. (8)

This yields, in component free form,
’l'“A(O):wXTA(O). (9)

Of course this argument can be generalized to any instant of time, provided that the Taylor expansion
of Rjx(t) at any time gives

Rji(t +dt) = R (t) + dtw - Ly R’ (t). (10)
Apply this argument to the body frame basis vector itself
éaj = W (L) nel = wiepjel = wy ek, (11)
where wy; is the dual 2-form of the angular velocity 1-form. The orthonormality condition yields
€léaj = wj. (12)

We have therefore established the rows for “evolution” and “angular velocity 2-form” in Table 1.
At any time, the velocity of the point A on the rigid body is given by

RAZR-F’I;‘AEV—FLUXTA. (13)

The intepretation is clear: at any time the velocity is the superposition of a translational velocity of
the reference point and a rotational velocity relative to that point. The angular velocity is the rate of
change of rotation generation by the generators in s0(3).
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Figure 2: Illutration of the change of reference point.

Notice that another point O’ can be picked as the reference point, with a being the vector pointing
from O to O, and r4 = a + 7/;. See Fig 2 for an illustration. The new translational velocity and
angular velocity are

V=V+4+wxa, w=w. (14)

(See (31.3) of Landau&Lifshitz[1], and derivations therein) It means that the angular velocity does not
depend on the reference point, and that the translational velocity of the new reference point is given
by a superposition of translational velocity and rotational velocity of the new point relative to the old
one.

We have established for a given point A on the rigid body with position vector r4 relative to the

reference point, that

d ~d R

—rp=A%—e; = A%(w x e3) =w X T4. 15

dt A dt a ( a) A ( )
But for a generic vector B, not necessarily the position vector of a point in the body (for example the
position of an ant crawling on the body), we generally have B = B%(t)es(t). The component in the

body frame also depends on time. In this case

%B = Bie; + Bi(w x e3) = %B +w x B, (16)
where d/dt is defined as the time derivative in the body frame. This is (4.86) in [2], and (36.1) in [1].
The distinction between the two time derivatives in background and body frame is now much clearer
than explained by words. The Euler equation of motion for the rigid body is always the equation of
motion in the body frame (often in terms of the Euler angles). Hence the Lattin indices in traditional
text like [1, 2] should correspond to hatted early Lattin indices in this note.

2.2 Kinetic energy and inertia tensor

If we want the dynamics, we want to be able to write down the Lagrangian L = T — V. Formally
the Lagrangian is a function with dependence on the generalized coordinates and their velocities
L(R,R,e;,é;). We know that €; = w x es. Equivalently we can write L(R, R, p,w), with ¢ being
the rotation angles that w is conjugate to. The problem is, there is no such thing as the rotation angles
being a state variable that enters the Lagrangian function. The rotation angles can only acquire an
infinitesimal meaning as analysed above. If one insists on choosing some angles to incorporate the
rotational configuration, one has to introduce a certain convention due to the non-abelian nature of
SO(3). Euler angles is one such convention but we’ll not put much emphasis on them in this note.

The first task is to write down the kinetic energy of the rigid body. For convenience, we can think
of the rigid body as a set of discrete points. The generalization to continuum case is straightforward.
The kinetic energy of the body is

1 . 1
T=>)" gmalth = > 3ma [V2 4 (wxra)” +2V - (w x14)] (a7)
A A



From now on we choose O to be COM, which makes the last term vanish. The expression for the
kinetic energy becomes

1 1
T = Tyrams + Thop = 5mV2 + ; gmalw r4)%, (18)

where m = ) , m4 is the total mass of the body. For the rotational kinetic energy, write it out in
component form, use the identity

€ijk€itm = 010km — Ojm Ok (19)
for the Levi-Civita symbol, it gives
1 2,2 2
Trot = § imA [W TA— (w : ’I“A) ] : (20)

Again write this in component form, after some algebra,

1 . 1 . o1
Trot = iwzwj l? ma (7"124(51‘]‘ — TAiTAj)] = fw’_fijoﬂ = §w T w. (21)

I is thus defined as the moment of inertia tensor (henceforth called inertia tensor for brevity). It’s a
symmetric (0,2) type tensor. Its components in the background frame is defined above as

Iij = ZTTLA (7’12461‘3‘ — TAiTAj) , (22)
A

or for continuum system
I = / pdV (r28;; — rir;). (23)

I;; is time dependent in the background frame because r4 for each point is. However, its component in
the body frame is time independent. And the geometric meaning and symmetry arguments concerning
principle axes only apply in the body frame. Hence it’s much more desirable to talk about the inertia
tensor in the body frame. In fact, this is what Landau and Lifshitz do[1], especially in their section 35
about Euler angles. Their Lattin indices in section 35 should correspond to the hatted indices in this
note.

Let’s first examine how the component of a vector transforms. Consider a generic vector B, when
expanded in the body frame basis B = B%e;. Simply take its ith component in the background frame,
it gives B' = Bf!. Using the orthonormality condition 1, contract both side with ej;» we can get
B; = B'e;,. So in addition to capturing the rotational configuration, the triad also allows us to switch
between background frame and body frame for the vector components

B'= B, B;=D'e,. (24)
Then for the rank 2 covariant inertia tensor I,
L = Iiyehel = / pdV [r2ehelsiy — (ehra)(elry)] = / pdV (126, — Tar). (25)

The expression of the inertia tensor components stays the same in body frame. Since the body frame
basis coincide with the background basis at ¢ = 0, I.; computed at ¢ = 0 will keep the same values at
all times because the components r; of position vector remains the same in the body frame. This is
what Landau and Lifshitz used to compute the inertia tensor in section 32 of [1]. Choosing the body
frame axes to be the principle axes will diagonalize I;, thereby simplifying the calculations.

We'll work in the background frame since we want to track both translational and spinning motion
for our binary system later. Typically the potential of the system does not depend on the velocities.

If we assume this, the Lagrangian is

. 1 1
LR, R, p,w) = imV2 + oW I w—-V(R,p). (26)



The dependence on the angle variable ¢ is kept formally even if it only acquires an infinitesimal
meaning. However, if in some specific scenario the potential depends explicitly on the triad, one might
write the Lagrangian with functional dependence L(R, R, e, €;), by rewriting the rotational kinetic
energy in terms of e;.

1 . 1 & - 1 & Ab i g
Tror = Z 5mAr?4 = Z 5mA(A éa)? = Z §mAA Abe&eé&-j
A A

A

L apb 1 ab
= ;€56 <Z maA®A 5”-) ieaeiI”
A

[\

Ifjl; is a new concept proposed in this note. It can be dubbed “the second form of inertia tensor”. Its
expression, in both discrete and continuum system is

T = 3" maAtAbs;, (28a)
A

Ifjl; = /pr‘iri’éij dv. (28Db)

It is useful to regard it as a (0,2) tensor in the background frame while treating &,Z; as labels. The
Lagrangian now becomes

: 1 1 3
L(R,R,es,¢s) = 5mV2 + 5éa I% . e; — V(R eq). (29)

Checking the expression for the rotational kinetic energy (27) agrees with the first formula (21) is an
educative exercise to get familiar with triad formalism.

1 1
Trot = 2 /pdVr“rbezeZJ)(S” = /PdVTaTbel eie ez

= %/pdVT&T‘é (e5es) <€éjég>
1 /pdVT&TI; [(efez)' _ éf@é] [(eéjeg)‘ — éajeg}

2
1 dV a 1 bJ <C - 7]‘ dvljfz S
5 P (red) ree; eie@j7§ pavririese; + 044
~—~
eZeBk (30)
1 P .a .b 1 i,.J
=3 /pdVrlrJ (5“6@161-) (e};keg’v) =3 /pdVr rjdklwliwkj

1 o
=3 /pdVr’rjékl (W™emis) (Wenkj)

1 .

= i/pdVrlermw”Ekmiaknj
1 2

=3 pdV (w x r)

This is exactly the second term in (18), also the expression in (20), which leads to the rotational
kinetic energy (21) expressed in the inertia tensor of “the first form”. The derivation made use of the
orthonormality conditions of the triad and the definition of the angular velocity 2-form.

If we have chosen another point as the reference point instead of the COM, what will be the change
of inertia tensor and the form of total kinetic energy? As in section 2.1, if we choose point O to be
the new reference point, for a point on the rigid body " = r — a. The new inertia tensor is

I, = /pdV(T/25ij — ) = /pdV [(r* +a® =2r-a)d; — (r; — ai)(rj — a;)] = L;; + Il(ja), (31)

Ii(;l) = m(a25ij - al—aj). (32)



Doing this the other way around, i.e., plug r = r’ 4 a into the expression of I;; (23), it gives

Iy =1I; + I\ +2D' - ad;; — 2D{;a ), (33)
where D’ is the mass dipole moment when O’ is chosen as the reference point
D = /p(r')r'd?’r’. (34)
Comparing (31) to (33) gives a relation satisfied by the mass dipole moment
Dziaj) — D/ . aéij = m(a2 61’]’ — aiaj). (35)
Further contracting both sides with 6% yields ma? = —D’ - a, or in other words
ma=-D"-a, |D|=ma=D" (36)

The minus sign for the vector expression clearly reflects the geometric setup in Fig 2. Choosing the
COM as the reference point, in relativistic language, amounts to choosing the Frenkel-Mathisson-Pirani
(FMP) spin suplementary condition (SSC). This can add the correspondence D* = 0 and D* = 0 to the
correspondence list in Table 1. Although it’s not yet clear how (34) can correspond to D* = —S*" v,
in the relativistic case.

The rotational kinetic energy under the new choice is

1 1 . . 1 1
Trot = Fw I w= iwlaﬂ (I, — m(a®6i; — asa;)] = Fw I w- im(w x a)?. (37)
The physical intepretation is that, since the new point O’ is now considered as a fixed point of rota-
tion, “its kinetic energy” should be subtracted from the rotational kinetic energy and added to the
translational kinetic energy. But is the translational kinetic energy increased by the same amount?
From (14) we can compute

1 1 1 1
Tirans = ngQ = im(V’ —wxa)= imV’2 + im(w xa)? —mV' (wxa). (38)
The third term, in general, does not vanish. In the end the kinetic energy has to be written as
1 1
T:imV’2+§w-I’-w+D’-(V’xw), (39)

where we have reversed the sign of a in (38), which corresponds to the picture of a net matter
distribution direction @ measured from the new reference point (see Fig 2), and made use of (36). We
see that the effect of not choosing COM is to introduce a translation-rotation coupling term in the
kinetic energy. This is perhaps why Paul told me only the FMP SSC is the one that is most natural
and the one that makes the calculations have more realistic physical meaning. We see that if D # 0,
the conjugate momenta of V' and w, i.e., the linear and angular momenta, will contain the mass dipole
moment as an extra dependence on the interior matter distribution.

3 Dynamics

Now that the mathematical description of the kinematics is established, it’s time to derive the evolution
equation that determines the system’s dynamics. In the mean time, the rest of the correspondence of
Table 1 should be established. Without explicit statement, the reference point is chosen as COM from
now on.

Start from (26), the conjugate momenta

oL . oL -
= 8R1 = mRi, SZ = w = ijoﬂ (40)
are the linear momentum of the COM and (spin) angular momentum of the rigid body itself. The
equations of motion are formally written as
oL . oL

OR? S dp* (41)

%

.




N; is defined as the torque 1-form exerted on the system. For a specific mechanical system, it’s usually
given or can be derived. And it being zero means that the system possesses rotational invariance, as is
seen by L/9p" = 0. To see this geometrically (see Fig 5 of Landau&Lifshitz [1], the following deriva-
tion is adapted from it too), for a generic mechanical system (not necessarily a rigid body), imagine
an infinitesimal rotation is performed on the system, which can either be a gedanken experiment or an
actual rotation, the variation of the position vector for a point A is 6R4 = d¢ x R4. The variation
of the Lagrangian is
oL oL

SL = > m-CSRAJr@aRA:%:pA-CSRAerA-(SRA

= ZPA (6 x Ra)+pa- (0o x Ry) =~ Z(RA x pa)+ (Ra x pa) (42)
A A

d
=0p- 7 zA:(RA X pa),

where the Euler-Lagrangian equation is used. This gives the microscopic interpretation of the angular
momentum vector: it’s simply R X p summed over all the points in the system. If the potential is
independent of the velocities, the conjugate momentum defined from the Lagrangian comes from the
kinetic energy solely, which allows R, to be proportional to p4 with mgl being the proportionality
constant. This gives a concrete way to calculate the torque

OL
% = ;RA X fA. (43)

It also gives a microscopic interpretation of the torque, although very often we don’t have such detailed
microscopic information in relativistic mechanics.

For the spin equation of motion, it’s also desirable to define its dual 2-form version. A naive guess
for the relation between angular momentum and angular velocity 2-forms will be

oL
Owik’
But actually there is a factor of 2 missing. We take (40) and the first equality of (44) as definitions
and check the second equality of (44). Since the potential is assumed to be independent of any velocity

variable, it suffices to look at the kinetic energy. Rewrite the rotational kinetic energy in angular
velocity 2-forms

Sjk = Sieijk = (44)

2
| 1 1. 1 . 1/1 o
Trot = ngwjlij = 511 (261klwkl> <2€jmnwmn) = § (2) Iijelklejmnwklwmn- (45)

For convenience, we work in a coordinate where for the given time ¢ the inertial tensor I;; is diagonal-
ized, i.e., I;; = I;0;; (no sum over 7). Use the identity (19), we can establish that

3 3

1 1\° 1\2 _
Trat _ § Z (2) Iz (5km5ln _ 5lm§kn) WeiWmn = Z <2> Iz wjkwjk_ (46)

=1 i=1

Then the the partial derivative of the Lagrangian with respect to w/” is

L 1L 1
=1

On the other hand, the dual of angular momentum S; is

3 3
Sjk = Sieijk = Iilwléijk = Z Iiéilwleijk = Zliwlqjk = tr(I)wjk. (48)
i=1 1=1
Eventually
oL



Indeed there was a factor of 2 missing in the original guess. The equation of motion for S is
Sjk = Niqjk. (50)

It’s just the Hodge dual of the original equation of motion for S;. Up to now we have established
the correspondence of the last three rows of Table 1. Another lesson from this comparison, apart
from the one about the mass dipole moment and SSC, is that the spin angular momentum already
encodes the information about the matter distribution through the dependence on the inertia tensor.
In relativity as we study deformable objects, the internal matter distribution is also hidden in the
conjugate momenta p,, and S, from the general form of the Lagrangian[5]. That’s why there is no
explicit equation of motion for multipoles higher than dipole. As they captures the internal matter
distribution, which is in turn already hidden in p,, S,., the evolution of p,, S, determines the
evolution of the internal matter distribution. However, to close the differential system, we’ll need the
analog of equation of state for the internal matter distribution. These points should also be present
when we study the Newtonian gravity of deformable bodies, which are deformed by spins and tidal
fields in the most general case.

The next task is to study two spinning rigid bodies in bound orbits under Newtonian gravity. Can
we properly describe its motion and its dynamics? Can we define the total energy and total angular
momentum and relate them to the local information of the individual spinning rigid bodies? Can we
come up with a variational identities for this relation?
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